49. (a) The magnitude of the magnetic dipole moment is given by $\mu=N i A$, where N is the number of turns, i is the current, and A is the area. We use $A=\pi R^{2}$, where R is the radius. Thus,

$$
\mu=\operatorname{Ni} \pi R^{2}=(300)(4.0 \mathrm{~A}) \pi(0.025 \mathrm{~m})^{2}=2.4 \mathrm{~A} \cdot \mathrm{~m}^{2}
$$

(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 29-27:

$$
B=\frac{\mu_{0}}{2 \pi} \frac{\mu}{z^{3}} .
$$

We solve for z :

$$
z=\left(\frac{\mu_{0}}{2 \pi} \frac{\mu}{B}\right)^{1 / 3}=\left(\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(2.36 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)}{2 \pi\left(5.0 \times 10^{-6} \mathrm{~T}\right)}\right)^{1 / 3}=46 \mathrm{~cm}
$$

