49. (a) The magnitude of the magnetic dipole moment is given by $\mu = NiA$, where N is the number of turns, i is the current, and A is the area. We use $A = \pi R^2$, where R is the radius. Thus,

$$\mu = Ni\pi R^2 = (300)(4.0\text{ A})(\pi)(0.025\text{ m})^2 = 2.4\text{ A} \cdot \text{m}^2.$$

(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 29-27:

$$B = \frac{\mu_0 \mu}{2\pi z^3}.$$

We solve for z:

$$z = \left(\frac{\mu_0 \mu}{2\pi B}\right)^{1/3} = \left[\frac{(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})(2.36\text{ A} \cdot \text{m}^2)}{2\pi(5.0 \times 10^{-6} \text{ T})}\right]^{1/3} \approx 46\text{ cm}.$$