15. (a) The frequency is

$$
f=\frac{\omega}{2 \pi}=\frac{(40 \mathrm{rev} / \mathrm{s})(2 \pi \mathrm{rad} / \mathrm{rev})}{2 \pi}=40 \mathrm{~Hz} .
$$

(b) First, we define angle relative to the plane of Fig. 30-44, such that the semicircular wire is in the $\theta=0$ position and a quarter of a period (of revolution) later it will be in the $\theta=\pi / 2$ position (where its midpoint will reach a distance of a above the plane of the figure). At the moment it is in the $\theta=\pi / 2$ position, the area enclosed by the "circuit" will appear to us (as we look down at the figure) to that of a simple rectangle (call this area A_{0} which is the area it will again appear to enclose when the wire is in the $\theta=3 \pi / 2$ position). Since the area of the semicircle is $\pi a^{2} / 2$ then the area (as it appears to us) enclosed by the circuit, as a function of our angle θ, is

$$
A=A_{0}+\frac{\pi a^{2}}{2} \cos \theta
$$

where (since θ is increasing at a steady rate) the angle depends linearly on time, which we can write either as $\theta=\omega t$ or $\theta=2 \pi f t$ if we take $t=0$ to be a moment when the arc is in the $\theta=0$ position. Since \vec{B} is uniform (in space) and constant (in time), Faraday's law leads to

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}=-B \frac{d A}{d t}=-B \frac{d\left(A_{0}+\frac{\pi a^{2}}{2} \cos \theta\right)}{d t}=-B \frac{\pi a^{2}}{2} \frac{d \cos (2 \pi f t)}{d t}
$$

which yields $\mathcal{E}=B \pi^{2} a^{2} f \sin (2 \pi f t)$. This (due to the sinusoidal dependence) reinforces the conclusion in part (a) and also (due to the factors in front of the sine) provides the voltage amplitude:

$$
\varepsilon_{m}=B \pi^{2} a^{2} f=(0.020 \mathrm{~T}) \pi^{2}(0.020 \mathrm{~m})^{2}(40 / \mathrm{s})=3.2 \times 10^{-3} \mathrm{~V}
$$

