21. (a) We compare this expression for the current with $i=I \sin \left(\omega t+\phi_{0}\right)$. Setting $(\omega t+\phi)=$ $2500 t+0.680=\pi / 2$, we obtain $t=3.56 \times 10^{-4} \mathrm{~s}$.
(b) Since $\omega=2500 \mathrm{rad} / \mathrm{s}=(L C)^{-1 / 2}$,

$$
L=\frac{1}{\omega^{2} C}=\frac{1}{(2500 \mathrm{rad} / \mathrm{s})^{2}\left(64.0 \times 10^{-6} \mathrm{~F}\right)}=2.50 \times 10^{-3} \mathrm{H} .
$$

(c) The energy is

$$
U=\frac{1}{2} L I^{2}=\frac{1}{2}\left(2.50 \times 10^{-3} \mathrm{H}\right)(1.60 \mathrm{~A})^{2}=3.20 \times 10^{-3} \mathrm{~J}
$$

