91. (a) When the eye is relaxed, its lens focuses far-away objects on the retina, a distance i behind the lens. We set $p=\infty$ in the thin lens equation to obtain $1 / i=1 / f$, where f is the focal length of the relaxed effective lens. Thus, $i=f=2.50 \mathrm{~cm}$. When the eye focuses on closer objects, the image distance i remains the same but the object distance and focal length change. If p is the new object distance and f^{\prime} is the new focal length, then

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f^{\prime}}
$$

We substitute $i=f$ and solve for f^{\prime} :

$$
f^{\prime}=\frac{p f}{f+p}=\frac{(40.0 \mathrm{~cm})(2.50 \mathrm{~cm})}{40.0 \mathrm{~cm}+2.50 \mathrm{~cm}}=2.35 \mathrm{~cm} .
$$

(b) Consider the lens maker's equation

$$
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

where r_{1} and r_{2} are the radii of curvature of the two surfaces of the lens and n is the index of refraction of the lens material. For the lens pictured in Fig. 34-43, r_{1} and r_{2} have about the same magnitude, r_{1} is positive, and r_{2} is negative. Since the focal length decreases, the combination $\left(1 / r_{1}\right)-\left(1 / r_{2}\right)$ must increase. This can be accomplished by decreasing the magnitudes of both radii.

