29. Bright interference fringes occur at angles θ given by $d \sin \theta=m \lambda$, where m is an integer. For the slits of this problem, $d=11 a / 2$, so $a \sin \theta=2 m \lambda / 11$ (see Sample Problem 36-5). The first minimum of the diffraction pattern occurs at the angle θ_{1} given by a sin $\theta_{1}=\lambda$, and the second occurs at the angle θ_{2} given by $a \sin \theta_{2}=2 \lambda$, where a is the slit width. We should count the values of m for which $\theta_{1}<\theta<\theta_{2}$, or, equivalently, the values of m for which $\sin \theta_{1}<\sin \theta<\sin \theta_{2}$. This means $1<(2 m / 11)<2$. The values are $m=6$, $7,8,9$, and 10 . There are five bright fringes in all.
