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 This manual accompanies a video titled “Motion Analysis” that demonstrates each of the 

experiments listed.  Each experiment is shown initially in real time, then in a series of slower, single 

frame shots.  Students are encouraged to cover the television with blank overhead transparency 

sheets and record positions of the various objects in motion during the single frame shots.  Using 

this method, students can learn about different types of motion without the need for lots of 

expensive equipment.  This manual contains sample data from each of the experiments and is 

designed to guide teachers through the exercises.  Normally students should obtain their own data 

from analysis of the video.  These data and analyzes here are intended for teacher use only.  For a 

copy of the “Motion Analysis” video, please contact the demonstration lab at the University of 

Virginia Department of Physics at (434) 924-6800.



 
 

Determining Air Track Calibration Factor 
 
 

In all of the experiments in this manual, a distance measured on the television 

screen will not be equivalent to the distance the object has traveled.  In other words, 1 

meter in the lab will not be the same as 1 meter measured on the television screen (unless 

you have an enormous television).  In order for our measurements to make sense, we 

know how to convert distances measured on the screen to their actual distances in the lab.  

To accomplish this we need to measure something on the screen in each experiment for 

which we know the actual length.  For some of the experiments (ie Free Fall), it is clear 

what the distance is (two large white marks, one meter apart).  In the air track 

experiments, there are 10 visible posts that support the air track.  Measure the distance 

between any two of the posts and use the chart below to make the conversion. 

 
 
Post # Position (m) Difference (m) 

0 0 0 
1 0.305 0.355 
2 0.660 0.305 
3 0.965 0.305 
4 1.270 0.305 
5 1.575 0.305 
6 1.880 0.305 
7 2.185 0.305 
8 2.490 0.305 
9 2.795 0.305 

 
 
 
For example, if you measured the distance between posts 2 and 3 to be 6 cm on the 

television the calibration factor would be found as follows: 

 0.305 m (lab) 5.08
0.06 m (tv)

=  m in the lab for every 1 m measured on the television 

screen.   

Remember that this calibration factor is not only different for every television, but may 

also vary vertically and horizontally on the same television. 

 
The posts are numbered from the left 

side of the screen, with the left end 

post labeled here as 0.  As you see, 

the separations are very uniform 

except for the one between post 0 and 

post 1 at the left end. 



 
 

 
 
 
 

#1. Car on Air Track:  Constant Velocity 

 

 

  In this demonstration we look at the uniform motion of a body that has constant velocity.  

The plot of position versus time should be linear as the equation of motion is 0 0x x v t= +  (where 

we take 0 0x = ). 

 

 

Using the first and last points of

Using a linear best-fit trend line

Time (s) Position (cm) 
3.5 0.00 
3.7 1.73 
3.9 3.55 
4.1 5.35 
4.3 7.25 
4.5 9.20 
4.7 10.90 
4.9 12.85 
5.1 14.75 
5.3 16.55 
5.5 18.35 
5.7 20.25 
5.9 22.10 
6.1 24.10 
6.3 25.85 
6.5 27.80 
1

 

 the graph we can estimate the average velocity to be:  

0
27.8 cm 0 cm 9.33 cm / s
6.5 s 3.52 s

v −= =
−

 

, the slope yields an average velocity of 9.29 cm/s. 

y = 9.2865x - 32.646
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#2. Propeller Driven Car on Air Track:  Uniform Acceleration 

 

  In this demonstration we measure the motion of a body under a constant force. A propeller 

mounted on top drives the air car along a horizontal track.  We can map out the position versus time 

to see the parabolic nature of the curve.  This reflects the constant acceleration of the body.  To 

determine the value of the acceleration, we plot velocity versus time by calculating the average 

velocity during each time interval using the relation: 

 

( ) ( )
average

x t t x t
v

t
+ ∆ −

=
∆

 

  Then the acceleration is just the slope of v versus time as 0 .v v at= +  

 

Time (s) x (cm) Average Time (s) Average v (cm/s) 
4.00 0.00 - - 
4.50 0.20 4.25 0.40 
5.00 0.43 4.75 0.46 
5.50 0.95 5.25 1.04 
6.00 1.80 5.75 1.70 
6.50 2.95 6.25 2.30 
7.00 4.35 6.75 2.80 
7.50 6.05 7.25 3.40 
8.00 7.93 7.75 3.76 
8.50 10.00 8.25 4.14 
9.00 12.25 8.75 4.50 
9.50 14.75 9.25 5.00 

10.00 17.37 9.75 5.24 
10.50 20.35 10.25 5.96 
11.00 23.35 10.75 6.00 
11.50 26.45 11.25 6.20 
12.00 29.75 11.75 6.60 
12.50 33.40 12.25 7.30 
13.00 37.30 12.75 7.80 
13.50 41.10 13.25 8.20 
14.00 45.88 13.75 8.96 

 

  By drawing a best fit line through the velocity versus time points we obtained an 

acceleration of 0.87 cm/s2:  a computer fit to the x versus t plot estimated an acceleration of 0.84 

cm/s2.  

  The spread in the data as seen in the non-linear velocity plot may arise from the non-uniform 

"horizontal" air track and the jitter of the television image:  this reflects the errors that occur in real 

experimental data.
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#2. Propeller Driven Car on Air Track:  Uniform Acceleration  (continued) 
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#3. Inclined Plane:  Uniform Acceleration 

 

  In this demonstration we will place a car on an air track that is inclined with respect to the 

horizontal.  The increase in height of one support is about 10.1 cm while the distance between 

supports is 3.8 m:  this results in an angle to the horizontal of 1.52°.  By plotting the displacement 

versus time we can see the parabolic nature that results from x = x0 + v0 t + ½ a t2.  By estimating the 

instantaneous velocity by dividing the difference in successive positions by the time interval, we 

can obtain the acceleration as the slope of velocity versus time plot.  

 

Time (s) Position (cm) Avg Time (s) Avg Vel (cm/s) 
2.50 0.00 - - 
2.80 0.85 2.65 2.83 
3.10 2.05 2.95 4.00 
3.40 3.75 3.25 5.67 
3.70 5.65 3.55 6.33 
4.00 8.10 3.85 8.17 
4.30 11.05 4.15 9.83 
4.60 14.35 4.45 11.00 
4.90 17.85 4.75 11.67 
5.20 21.80 5.05 13.17 
5.50 26.20 5.35 14.67 
5.80 30.95 5.65 15.83 
6.10 35.90 5.95 16.50 
6.40 41.50 6.25 18.67 
6.70 47.45 6.55 19.83 

 

  From the plot of velocity vs. time we can estimate the average value of the acceleration as:  

219.83 cm / s 2.83 cm / s 4.36 cm/s
6.70 s 2.80 s

− =
−

.  By measuring the length of a meter stick on the screen, 16.7 

cm, we can obtain the acceleration in the lab frame, 0.261 m/s2.  Does this give a reasonable value 

for g, the gravitational acceleration?   Using the expression for the acceleration of an inclined plane, 

a = g sinθ, the value of g then should be:  

2 2sin 0.261 m / s sin(1.52 ) 9.84 m sg a θ= = ° =  

This differs from the actual value of g (9.82 m/s2) by 0.2%. 

  Using a linear best-fit line, the slope of the line yields an average acceleration of 4.32 m/s2.  

The calculated value for g from this number is 9.75 m/s2, an error of 0.7%. 
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#3. Inclined Plane:  Uniform Acceleration (continued) 
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#4. Free Fall:  Uniform Gravitational Acceleration 
 

  In this demonstration we record the path of a ball dropped from rest:  under the attraction of 

gravity x = ½ g t2, where g = 9.82 m/s2.  By plotting x versus t we can see the parabolic nature of the 

path.  By calculating the average velocity as in earlier demos we can measure the value of g from 

the slope of v versus time. 

 

Time (1/30 s) Position (cm) Average Time (1/30 s) Average Velocity (cm/s) 
1 0.35 0.5 10.5 
2 0.73 1.5 11.4 
3 1.40 2.5 20.1 
4 2.20 3.5 24.0 
5 3.30 4.5 33.0 
6 4.55 5.5 37.5 
7 6.00 6.5 43.5 
8 7.65 7.5 49.5 
9 9.50 8.5 55.5 

10 11.43 9.5 57.5 
11 13.60 10.5 65.1 
12 15.85 11.5 67.5 
13 18.35 12.5 75.0 
14 20.90 13.5 76.5 
15 23.75 14.5 85.5 
16 26.80 15.5 91.5 
17 30.00 16.5 96.0 
18 33.80 17.5 114.0 
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#4. Free Fall:  Uniform Gravitational Acceleration (continued) 
 

We can find acceleration by using a linear best-fit line: 
2 2slope*(30 frames per second)  5.631 cm/s * 30 = 168.92 cm / sa = =  

By measuring the meter stick on the television monitor to be 16.9 cm, we can convert the above 

acceleration in the monitor frame to the lab frame by dividing by 16.9.  We obtain a value of 9.99 

m/s2, a 1.7% difference from the true value of 9.8 m/s2.  

y = 5.6305x + 5.6362
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  Note:  we can also use these data to check conservation of energy.  The change in kinetic 

energy is equal to the change in potential energy:  ½ mv2 = mgh.  Thus v2 = 2gh.  For the last "good 

point" on the v versus t graph, we have v2 = 32.3 m2/s2 and 2gh = 34.8 m2/s2 (after converting to the 

lab frame), a difference of 7%. 

  Note:  Data are difficult to take from later frames due to the blurring of the image during the 

exposure of the frame – the image shape goes from a circle to a hot dog oval, we used the center of 

the image for the location of the ball. 
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#5. Relativity Car 
 

  The relativity car is equipped with a spring-loaded gun.  The car rides along a track until it 

hits a trigger, which causes a ball bearing to be launched vertically from the gun barrel.  The gun 

gives the ball bearing a vertical velocity relative to the car, and the ball bearing also has a horizontal 

velocity component equal to that of the cart:  the velocity of the ball bearing in the lab frame is the 

sum of the two components. 

  Since the ball bearing will be moving in two dimensions (vertically and horizontally) we 

will need to record its position in both dimensions.  Be careful, use enough plastic sheets to cover 

the entire range of motion in both directions on the TV screen.  We used the top of the funnel as a 

convenient "zero line".  Mark it at the left of the screen and again at the right to define a horizontal 

baseline. 

 

Time (1/30 s) x Position (cm) Y Position (cm) ∆y/∆t (cm/s)=
1 0.0 5.0 - 
2 1.4 9.6 138 
3 5.6 13.7 123 
4 3.6 17.3 108 
5 4.8 20.5 96 
6 5.9 23.3 84 
7 6.8 25.9 78 
8 8.0 27.9 60 
9 9.1 29.6 51 

10 10.1 30.8 36 
11 11.1 31.4 18 
12 12.1 31.8 12 
13 13.3 31.6 -6 
14 14.5 30.9 -21 
15 15.6 29.8 -33 
16 16.7 28.2 -48 
17 17.9 26.3 -57 
18 19.0 24.0 -69 
19 20.1 21.2 -84 
20 21.2 18.1 -93 
21 22.3 14.8 -99 
22 23.5 10.9 -117 
23 24.6 6.6 -129 

 

  It's interesting to plot y versus t and x versus t on two separate graphs.  We find that the x 

plot is linear with a slope of about 33 cm/s (screen velocity). The y plot looks parabolic, indicating 

that it will be interesting to plot velocity in the y dimension y
t

∆�
� ∆�

versus t.   
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#5. Relativity Car  (continued) 
 

 

 

 

 

 

 

 

 

 

   

 

This gives a more or less straight line, thereby indicating that the acceleration in the y direction is 

constant.  The slope of this line is –12.732 sm/s2 * (30 frames per second) = -381.96 cm/s2.   I 

measured the actual maximum height of the trajectory in the room to be about 90 cm, while on the 

TV (see data for maximum value) the height was 31.8 cm.  Using this conversion, the acceleration 

becomes -1081 cm/s2 = -10.81 m/s2, a difference of 10.1% from the accepted value of -9.8 m/s2 – 

not bad for such a crude measurement. 
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#6. Projection of Circular Motion 

 

  This is the end-on projection of a ball attached to a phonograph turntable moving in a circle.  

What we see is the ball moving back and forth across the screen horizontally as the turntable rotates 

around.  We arbitrarily located a zero mark on the left side of the screen, marked the ball's location 

through a little more than one cycle, and got the following data: 

  

Time (sec) Location (cm) 
0.0 0.8 
0.1 2.3 
0.2 5.9 
0.3 11.1 
0.4 17.2 
0.5 23.7 
0.6 29.8 
0.7 35.1 
0.8 38.7 
0.9 40.3 
1.0 39.5 
1.1 36.2 
1.2 31.1 
1.3 24.6 
1.4 17.8 
1.5 11.2 
1.6 5.6 
1.7 2.1 
1.8 0.8 
1.9 2.0 
2.0 5.4 
2.1 10.3 
2.2 16.4 
2.3 22.9 

   

  Graphing these data gave us a very nice sinusoidal shape oscillating around the turntable's 

spindle location (which on our screen was at 19.7 cm).  The period of oscillation was measured to 

be T = 1.81 s which agrees nicely with the speed of the turntable, 33 1/3 rpm.  

T = (60 s/min) / (33.333 rpm) = 1.80 s 

  It's also interesting to find the slope of the graph (which is the velocity) at the center and 

compare this to the predicted 2 rv
T
π� =�

�
 velocity.  We get a slope of 62.6 cm/s and a radius of 

19.75 cm, so 2 68.6r
T
π =  cm/s (8.7% difference). 

y = 62.6x - 7.72
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#7. Bowling Ball Pendulum:  Periodic Motion 
 

  In this demonstration we look at the periodic motion of a pendulum formed by a bowling 

ball suspended from a wire.  The length of the wire is 5.43 m, so we can compare the expected 

period of motion: 

2 1 4.67 sT g= π =  

with what we can measure from the plot of position versus time. 

  From the data tape we can measure the position as: 

 

Time (s) Position (cm) Time (s) Position (cm) Time (s) Position (cm) 
7.0 0.00 9.4 46.10 11.8 1.00 
7.2 1.60 9.6 44.00 12.0 3.50 
7.4 5.15 9.8 40.35 12.2 7.55 
7.6 9.70 10.0 35.65 12.4 12.65 
7.8 15.35 10.2 29.90 12.6 18.30 
8.0 21.40 10.4 23.95 12.8 24.30 
8.2 27.55 10.6 17.85 13.0 30.25 
8.4 33.20 10.8 12.30 13.2 35.85 
8.6 38.45 11.0 7.20 13.4 40.60 
8.8 42.70 11.2 3.20 13.6 44.00 
9.0 45.50 11.4 0.80 13.8 46.15 
9.2 46.70 11.6 0.10 14.0 46.70 

 

  By comparing two areas of similar slope that are spaced one period apart, and by drawing a 

horizontal line between them to select the same point, one period apart, we find the period of our 

plot to be 12.9 s – 8.2 s = 4.7 s, a 0.6% error when compared with the calculated value. 
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#8. Bowling Ball Pendulum:  Conservation of Energy 
 

  In this demonstration we use the bowling ball pendulum to examine the relation between 

potential and kinetic energies.  In a conserved system the total energy is constant, thus any change 

in potential energy, mgh, is balanced by a change in the kinetic energy, 21
2

mv .  Equating these two 

yields v2 = 2gh.  We can measure the average maximum height of the bowling ball and measure the 

displacement versus time during its maximum rate of motion at the bottom of its swing to prove the 

above equation. 

  From the data tape we observe: 

  The height of the ball above the table is 6.65 cm at maximum and 3.15 cm at minimum on 

the television monitor:  a 1 meter stick measures 11.8 cm.   Thus the change in height is 

(6.65 – 3.15) / 11.8  = 29.7 cm in the lab frame. 

  We measure the distance versus time for a few oscillations to obtain an average value of 

maximum speed: 

 

Time interval (s)  ∆x (cm) 
3.3 - 3.6 10.03 
5.7 - 6.0 9.83 
8.1 - 8.4 9.63 

10.4 - 10.7 9.47 
12.8 - 13.1 9.40 
15.2 - 15.5 9.45 
17.6 - 17.9 9.25 

 

 

  The average spacing is 9.58 cm.  Note however that the horizontal calibration of the meter 

stick is 13.05 cm, not the 11.8 cm of the vertical direction:  televisions usually have slightly 

different horizontal and vertical calibrations.  Using the horizontal calibration we can obtain we can 

obtain an average velocity = 9.58 cm 2.45 m s.
13.05 cm/m * 0.3 s

=  

  Using the relation v2 = 2gh, the value of 2.45 m/s would predict a maximum height of 30.5 

cm, a 2.7% difference with the measured value of 29.7 cm determined above. 
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#9. Cart on Air Track with Springs:  Harmonic Motion 
 

  In this demo we look at the fairly frictionless motion of a cart on an air track as it oscillates 

under the force of a pair of springs.  We want to show the period of the motion is independent of the 

amplitude of the path and to show that it is a sinusoidal function. 

  The data points are: 

Time (s) x (cm) Time (s) x (cm) Time (s) x (cm) 
4.8 -8.50 - - 127.5 -5.55 
5.0 0.05 48 -5.05 127.7 -0.85 
5.2 8.65 48.2 1.05 127.9 4.00 
5.4 16.25 48.4 7.20 128.1 8.50 
5.6 21.95 48.6 12.40 128.3 11.85 
5.8 25.10 48.8 16.25 128.5 14.15 
6.0 25.40 49 18.20 128.7 14.55 
6.2 22.25 49.2 17.75 128.9 13.15 
6.4 16.85 49.4 15.15 129.1 10.30 
6.6 9.35 49.6 10.75 129.3 6.20 
6.8 1.10 49.8 5.20 129.5 1.55 
7.0 -7.30 50 -0.85 129.7 -3.10 
7.2 -15.10 50.2 -6.95 129.9 -7.70 
7.4 -21.25 50.4 -12.30 130.1 -11.20 
7.6 -24.65 50.6 -16.45 130.3 -13.45 
7.8 -24.65 50.8 -18.20 130.5 -13.75 
8.0 -21.55 51 -17.80 130.7 -12.40 
8.2 -15.65 51.2 -15.25 130.9 -9.45 
8.4 -8.00 51.4 -10.60 131.1 -5.30 
8.6 0.03 51.6 -4.75 131.3 -0.70 
8.8 8.45 51.8 1.25 131.5 4.00 

 

  By measuring the time differences for the three oscillations we can obtain the period: 

   1st T = 8.6 – 5.0 = 3.6 s 

   2nd T = 51.8 – 48.2 = 3.6 s 

   3rd T = 131.3 – 127.7 = 3.6 s 

  Thus the average value of the period is 3.6 seconds.  Does the curve of position versus time 

behave as a sine wave?  If we approximate the zero-crossing point to be at 5 seconds, and 

approximate the average amplitude for the first oscillation to be 25.25 cm, we can roughly fit the 

data to: 

( )
o36025.25 sin 5.0 s  cm

36 s
y t

�
= −��

�
 

  Examination of the plot of this fit and the data from the 1st run shows a fairly consistent 

agreement: note that the fit depends on the amplitude, the period, and the phase of the sine wave. 
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#9. Cart on Air Track with Springs:  Harmonic Motion  (continued)  
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#9 Cart on Air Track: Harmonic Motion
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#10. Mass on a Vertical Spring:  Harmonic Motion 

 

  This segment starts with a spring hanging from a rod.  A 1 kg mass is attached to the spring and 

allowed to stretch the spring to the equilibrium position where the force of gravity on the mass is countered 

by the force of the stretched spring.  Then the mass is displaced downward and released and the resulting 

periodic motion is shown. 

  The first thing we need to do is to measure the spring constant, k, of the equation of the force of an 

expanded (or contracted) ideal spring: .F k x= − ∆
�

�

  Using the meter stick in the picture, measure the 

location of the end of the spring as it hangs freely; then measure again after the mass has been attached and is 

hanging at rest.  At this point you should also note the equilibrium position of the yellow mark on the mass, 

about 35.5 cm on the meter stick.  This will be useful later. 

  Now take the data on position versus time while the mass is in motion.  When you begin you should 

mark your equilibrium point (35.5 cm) for later reference.  Note that the stop-frame segment shows every 

other frame, so that the time between each point shown is 2/30 of a second.  Here are the data we obtained: 
 

Frame Time (1/30 s) Location (cm) 

1 0 2.00 
3 2 6.60 
5 4 13.20 
7 6 20.60 
9 8 27.70 

11 10 33.50 
13 12 36.60 
15 14 36.60 
17 16 32.80 
19 18 26.00 
21 20 18.30 
23 22 10.70 
25 24 4.30 
27 26 1.50 
29 28 2.54 
31 30 6.80 
33 32 13.50 
35 34 20.70 
37 36 27.70 
39 38 33.40 
41 40 36.60 
43 42 36.50 
45 44 32.90 
47 46 26.20 
49 48 18.50 
51 50 10.70 
53 52 4.70 
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#10. Mass on a Vertical Spring:  Harmonic Motion (continued) 
 

  Plotting these data gives a nice sinusoidal curve.  Locate the midpoint of the range of 

motion:  it should be the same as the equilibrium position you measured with the mass at rest.  Note 

as well that the motion is uniform about the midpoint:  an equal amount of time is spent above and 

below the equilibrium point.  How about the period?  Does it agree with the period expected from 

the equation of motion, 2 mT
k

= π ? 
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#11. Elastic Collision:  m1 = m2 , v2i = 0 

 

  In this collision demonstration, the two cars on the air track have equal masses: m1 = m2 = 

0.183 kg.  M1 has a nonzero initial velocity as well, which we can obtain from the plot of positions 

versus time. 

  To solve for the final velocities, we use both conservation of momentum (a vector) and 

conservation of kinetic energy as follows: 

 (1) 1 1i 2 2i 1 1f 2 2f        m v m v m v m v+ = +� � � �  

 (2) 2 2 2 2
1 1i 2 2i 1 1f 2 2f

1 1 1 1          
2 2 2 2

m v m v m v m v+ = +  

where "i" stands for initial and "f" stands for final values.  

   From the television screen we can find the positions versus time for the two masses: 

 

 

 
 

  

 

  

 

 

  

 

 

 

 From the accompanying graph we can estimate the values of the velocities from the slopes of the 

lines as: 

1i 2i
15.25 cm 0 cm 15.25 cm / s and 0 cm / s

4.0 s 3.0 s
v v−= = =

−
 

These values, when used with the known values of the massed and the equations of momentum and 

energy conservation, yield 1f 0v = cm/s and 2f 15.25v =  cm/s:  measured values from the slopes of 

the graph are 1f 0.8v = cm/s and 2f 15.35v = cm/s, the latter a difference of 0.6%. 

 Time (s) x of m1 (cm) x of m2 (cm)
3.0 0.00 15.70 
3.2 2.90 15.70 
3.4 5.90 15.70 
3.6 9.05 15.70 
3.8 12.10 15.70 
4.0 15.25 15.70 

collision 4.2 15.75 18.05 
4.4 15.90 21.20 
4.6 16.09 24.25 
4.8 - 27.25 
5.0 - 30.40 
5.2 - 33.20 
5.4 - 36.45 
5.6 16.55 39.55 
6.6 17.25 - 
10.2 20.55 - 
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#12. Elastic Collision:  m1 ≠≠≠≠ m2 , v2i = 0 
 

  In this collision demonstration, the two cars on the air track have unequal masses:  m1 = 

0.988 kg and m2 = 0.183 kg.  M1 has a nonzero initial velocity as well, which we can obtain from 

the plot of position versus time. 

  To solve for the final velocities, we use both conservation of momentum (a vector) and 

conservation of kinetic energy as follows: 

 (1) 1 1i 2 2i 1 1f 2 2f        m v m v m v m v+ = +� � � �  

 (2) 2 2 2 2
1 1i 2 2i 1 1f 2 2f

1 1 1 1          
2 2 2 2

m v m v m v m v+ = +  

where "i" stands for initial and "f" stands for final values. 

  From the television screen we can find the positions versus time for the two masses: 

 

 Time (s) x of m1 (cm) x of m2 (cm) 
 2.0 0.00 15.50 
 2.2 1.75 15.50 
 2.4 3.75 15.50 
 2.6 5.75 15.50 
 2.8 7.70 15.50 
 3.0 9.65 15.50 
 3.2 11.70 15.50 
 3.4 13.65 15.50 
 3.6 15.65 15.50 
collision 3.8 16.90 19.05 
 4.0 18.35 22.30 
 4.2 19.75 25.70 
 4.4 21.15 29.15 
 4.6 22.55 32.35 
 4.8 23.90 35.85 
 5.0 25.30 39.10 

 

  From the accompanying graph we can estimate the values of the velocities from the slopes 

of the lines as: 

1i 2i
15.45 cm 3.75 cm 9.75 cm / s and 0 cm / s

3.6 s 2.4 s
v v−= = =

−
 

  Similarly the other velocities measured from the graph are vif = 7.0 cm / s and 

v2f = 16.75 cm/s. 



 
 

20
 
 
 
 

 

#12. Elastic Collision:  m1 ≠≠≠≠ m2 , v2i = 0  (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  From Newton's laws we can expect the conservation of momentum and kinetic energy as 

expressed in the above equations (1-2).  Let's verify the "conservation laws" by comparing the left 

and right hand side of the two equations: 

(1)   0.988 kg * 9.75 cm/s + 0.183 kg * 0 = 0.988 kg * 7.0 cm/s + 0.183 kg * 16.75 cm/s 

               9.63 (kg cm/s)  9.98 (kg cm/s) 

and (2) 

2 2

2 2

1 1 0.988 kg * (9.75 cm/s)  0.183 kg * (0 cm/s)  
2 2
1 1 0.988 kg * (7 cm/s)  0.183 kg * (16.75 cm/s)
2 2

+ =

+
 

    46.96 (kg cm2/s2)  49.88 (kg cm2/s2) 

  We can see by the roughly equal values of both sides that "conservation" means the constant 

value of the expressions: thus before and after values are equal. 

  When we use the measured initial values of the masses and velocities in the equations of 

momentum and energy conservation, we obtain values for the final velocities of vif = 6.71 cm/s and 

v2f = 16.42 cm/s, differences of 4.3% and 2% respectively from the measured values. 
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#13. Elastic Collision:  m1 ≠≠≠≠ m2 , v1 ≠≠≠≠ v2 

 

  In this collision demonstration, the two cars on the air track have unequal masses: 

m1 = 0.183 kg and m2 = 0.384 kg.  They have nonzero initial velocities as well, which we can 

determine from the plot of positions versus time. 

  To solve for the final velocities, we use both conservation of momentum (a vector) and 

conservation of kinetic energy as follows: 

 (1) 1 1i 2 2i 1 1f 2 2f    m v m v m v m v+ = +� � � �  

 (2) 2 2 2 2
1 1i 2 2i 1 1f 2 2f

1 1 1 1          
2 2 2 2

m v m v m v m v+ = +  

where "i" stands for initial and "f" stands for final values. 

  From the television screen we can find the positions versus time for the two masses: 

 

 Time (s) x of m1 (cm) x of m2 (cm)
 5.3 0.00 15.70 
 5.5 1.15 14.70 
 5.7 2.60 13.65 
 5.9 4.00 12.70 
 6.1 5.40 11.65 
 6.3 6.85 10.70 
 6.5 8.30 9.73 
collision 6.7 7.40 9.88 
 6.9 5.63 10.38 
 7.1 3.83 10.90 
 7.3 2.05 11.50 
 7.5 0.04 12.05 
 7.7 -1.35 12.55 
 7.9 -2.95 13.05 

 
  From the accompanying graph we can estimate the values of the velocities from the slopes 

of the lines as: 

1i 2i
8.30 cm 0 cm 9.73 cm 15.7 cm7.09 cm s  and 4.98 cm s

6.5 s 5.33 s 6.5 s 5.30 s
v v− −= = = = −

− −
 

These values, when used with the known values of the masses and the equations of momentum and 

energy conservation, yield 1f 2f9.26 cm s and 2.81 cm s:v v= − =   measured values from the graph 

are 1f 2f8.52 cm s and 2.64cm sv v= − = , differences of 8.7 and 6.4% respectively. 
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#14. Inelastic Collision:  m1 = m2 , v2i = 0 
 

  In this collision demonstration, the two cars on the air track have equal masses and the 

second one has zero initial velocity, which we can obtain from the plot of position versus time. 

  To solve for the final velocities, we can only use conservation of momentum (a vector) as 

follows: 

 (1) 1 1i 2 2i 1 1f 2 2f =  + m v m v m v m v+� � � �  

where "i" stands for initial and "f" stands for final values. 

  From the television screen we can find the position versus time for the two masses: 

 

 Time (s) x of m1 (cm) 
 3.5 0 
 3.6 1.35 
 3.7 2.85 
 3.8 4.3 
 3.9 5.8 
 4.0 7.3 
 4.1 8.85 
 4.2 10.3 
 4.3 11.4 
collision 4.4 12.25 
 4.5 13.05 
 4.6 13.85 
 4.7 14.55 
 4.8 15.3 
 4.9 16.1 
 5.0 16.9 
 5.1 17.65 
 

 From the accompanying graph we can estimate the values of the velocities from the slopes of the 

lines as: 

   1i 1f
10.30 cm 0 cm 17.7 cm 11.4 cm14.93 cm s  and 7.88cm s

4.2 s 3.51s 5.1s 4.3 s
v v− −= = = =

− −
 

The first value, when used with the equation of momentum conservation, yields: 

1f 1i 2 7.47 cm s,v v= =  

an error of 5.5%. 
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#15. Inelastic Collision:  m1 ≠ m2 , v2i = 0 
 

  In this collision demonstration, the two cars on the air track have unequal masses, 

m1 = 0.183 kg; the second one has zero initial velocity.  We can obtain the velocities from the plot 

of position versus time. 

  To solve for the final velocities, we can only use conservation of momentum (a vector) as 

follows:   

 (1) 1 1i 2 2i 1 1f 2 2f =  + m v m v m v m v+� � � �  

where "i" stands for initial and "f" stands for final values. 

  From the television screen we can find the position versus time for the two masses: 

 

 Time (s) x of m1 (cm) 
 2.6 0 
 2.8 4.4 
 3 8.35 
 3.2 12.5 
 3.4 16.55 
collision 3.6 18.9 
 4.1 22.1 
 4.6 25.4 
 5.1 28.7 
 5.6 32.1 
 6.1 35.5 
 6.6 38.85 
 7.1 42.2 
 7.6 45.8 
 

 

  From the graph we can determine the values of the velocities from the slopes of the lines as: 

  1i 1f
16.7 cm 0.1 cm 45.6 cm 18.5 cm20.75 cm s  and 6.78cm s

3.4 s 2.6 s 7.6 s 3.6 s
v v− −= = = =

− −
 

The first value, when used with the equation of momentum conservation, yields: 

vf = 6.70 cm/s, an error of 1.2% 

  Note:  In the inelastic collisions I have measured the position by using the left hand side of 

the left mass.  This is easier to do, particularly after the collision. 
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#16. Inelastic Collision:  Dart and Cart 
 

  In this collision demonstration, a dart is fired at a cart on an air track.  Due to the limit of 

camera resolution, we could only get two positions of the dart before the collisions (∆t = 1/30 s).  

We then look at the combined dart and cart body as it travels down the air track:  an interval of  

∆t = 0.3 s seems to yield good results. 

  To solve for the final velocities, we can only use conservation of momentum (a vector) as 

follows: 

 (1) 1 1i 2 2i 1 1f 2 2f =  + m v m v m v m v+� � � �  

where "i" stands for initial and "f" stands for final values. 

  From the television screen we can find values for the positions versus time: 

 

 Time (s) x of m1 (cm) 
  

0.0 0.00 Before: 
(dart) 1/30 19.95 

  
0.0 0.00 
0.3 1.00 

After: 
( both 
 bodies ) 0.6 1.80 
 0.9 2.73 
 1.2 3.75 
 1.5 4.55 
 1.8 5.45 
 2.1 6.45 
 

From the two data points we can determine the initial velocity of the dart: 

 i
19.95 cm 0 cm 598.5 cm s

1 30 s 0 s
v −= =

−
 

The final velocity of the dart and cart is 3.04 cm /s, given by the slope above.  The first value when 

used with the equation of momentum conservation, and the values of the masses of the dart (2.1 g) 

and the cart (442 g) yields: 

vf = 2.83 cm/s 

This yields an error of 7.4% when comparing the experimental to theoretical values. 

y = 3.0425x + 0.0217
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