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Name____________________________Date__________________Partners____________________________ 

 
Rotational Dynamics 

 
 
OBJECTIVES 
 

• To study angular motion including angular velocity and angular acceleration. 
• To relate rotational inertia to angular motion. 
• To determine kinetic energy as the sum of translational and rotational components. 
• To determine whether angular momentum is conserved. 

 
 
OVERVIEW 
 
We want to study the rotation of a rigid body about a fixed axis.  In this motion the distance traveled by a 
point on the body depends on its distance from the axis of rotation.  
However, the angle of rotation θ , (also called the angular 
displacement), the angular velocity ω , and the angular acceleration α , 
are each the same for every point.  For this reason, the latter parameters 
are better suited to describe rotational motion.  The unit of angular 
displacement that is commonly used is the radian.  By definition, θ  is 

given in radians by the relation 
r
s

=θ , where s is the arc length and r is 

the radius as shown in Fig. 1.  One radian is the angle, measured at the 
center of a circle, whose legs subtend on the periphery an arc equal in 
length to the radius.  An angle of 90° thus equals π/2 radians, a full turn 
2π radians, etc.  The angular velocity is the rate of change of the angular 
displacement with time.  It is equal to the angle through which the body 
rotates per unit time and is measured in radians per second.  The 
angular acceleration is the rate of change of the angular velocity with 
time and is measured in radians per second squared.  In the limit of very 
small times, the angular velocity is the derivative of the angular 
displacement with respect to time and the angular acceleration is the 
derivative of the angular velocity with respect to time: 
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In linear motion the position, velocity, and acceleration are described by vectors.  Rotational quantities 
can also be described by (axial) vectors.  In these experiments, however, you will only have to make use of 
the magnitudes and signs of these quantities.  There will be no explicit reference to their vector character. 

Sometimes one needs the parameters of the linear motion of some point on the rotating rigid body.  
They are related very simply to the corresponding angular quantities.  Let s be the distance a point moves 
on a circle of radius r around the axis; let v be the linear velocity of that point and a its linear acceleration.   
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Then s, v, and a are related to θ, ω, and α by 

α
ω
θ

ra
rv
rs

=
=
=

                                                                                   (2) 

Let us now imagine a rigid body of mass m rotating with angular speed ω  about an axis that is fixed in 
a particular inertial frame.  Each particle of mass mi in such a rotating body has a certain amount of kinetic 

energy 2 2 21 1
2 2i i i im v m r ω= .  The total kinetic energy of the body is the sum of the kinetic energies of its 

particles. 

If the body is rigid, as we assume in this section, ω  is the same for all particles.  However, the radius r 
may be different for different particles.  Hence, the total kinetic energy K of the rotating body can be written 
as  

( ) ( )2 2 2 2
1 1 2 2

1 1
2 2 i iK m r m r m r 2ω ω= + + = ∑… .                                          (3) 

The term ∑  is the sum over i of the products of the masses of the particles by the squares of their 

respective distances from the axis of rotation.  We denote this quantity by the symbol I.  I is called the 
rotational inertia, or moment of inertia, of the body with respect to the particular axis of rotation.  I has 
dimensions of [ML

2
ii rm

2] and is usually expressed in kg · m2.  For extended bodies, the sum must be replaced by 
an integral: 

2 2 2
i iI m r r dm r dVρ= ⇒ =∑ ∫ ∫                                                          (4) 

 If the body has a uniform density (as is the case in this experiment) the integral can be rewritten as 
.  This integral can be easily calculated only for bodies with a simple shape that is 

symmetrical around the axis of rotation.  For example, some simple shapes are given in Fig. 2.  Note that 
the rotational inertia of a body depends on the particular axis about which it is rotating as well as on the 
shape of the body and the manner in which its mass is distributed. 

∫= dVrI 2ρ

 
 In terms of rotational inertia, we can now write the kinetic energy of the rotating rigid body as: 

21
2rotK Iω= .                                                                              (5) 

This is analogous to the expression for the kinetic energy of translation of a body, 21
2tranK m= v .  We have 

already seen that the angular speed ω  is analogous to the linear speed v.  Now we see that the rotational 
inertia I is analogous to the translational inertial mass m.   
 
 The rotational analog to force is torque (denoted by τ). Torque τ is related to F by rFτ =  (for r 
perpendicular to F)  
 
 In rotational dynamics, Newton's second law ( maF =  where F is the force, m is the mass and a is 
the acceleration) becomes: 

Iτ α=                                                                              (6) 
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Hoop about cylinder axis 
2mRI =  

 

 
 

Annular cylinder (or ring) about cylinder axis 

( )2
2

2
12

RRm
+  

 
 

 

 
 

Solid cylinder about cylinder axis 
2

2
1 mRI =  

 
 

 

 
 

Solid cylinder (or disk) about a central diameter 
22

12
1

4
1 mlmR +  

Fig. 2.  Rotational Inertia for some simple geometries. 

 

Recall that in the absence of external forces, linear momentum is conserved.  Similarly, in the absence 
of external torques, angular momentum is conserved.  Finally, if no non-conservative forces (such as 
friction) or torques act, then mechanical energy is conserved.  In summary, you will test the following 
conservation principles in this experiment: 

1. Epotential + Elinear kinetic + Erotational kinetic  =  constant 
 

2. The sum of the angular momentum  =  constant 
 

In Table 1, we compare the translational motion of a rigid body along a straight line with the rotational 
motion of a rigid body about a fixed axis.  
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You will need to have the following equipment for these experiments: 
 

● Rotational Dynamics kit ●      vernier calipers 
 

• photogate timer and stand ●      air supply 
 

• thread ●      digital extension cable   
 

• meter stick                                 ●      digital balance   
 
 
 
INVESTIGATION 1:  EXPERIMENTAL SET UP 
 
 

 

Table 1.  Rectilinear and Rotational Quantities 

Rectilinear Motion Rotation About a Fixed Axis 

Displacement x  Angular displacement θ  

Velocity 
dt
dxv =  Angular velocity 

dt
dθω =  

Acceleration 
dt
dva =  Angular acceleration 

dt
dωα =  

Mass (translational inertia) m dρ= V∫  Rotational inertia 2I r dVρ= ∫  

Force maF =  Torque ατ I=  

Work ∫= dxFW  Work ∫= θτ dW  

Kinetic energy 21
2KE mv=  Kinetic energy 21

2KE Iω=  
Power FvP =  Power τω=P  
Linear momentum p mv=  Angular momentum L Iω=  

DO NOT MOVE THE ROTATIN
THE TA MUST ASSIST 

 
Activity 1-1:  Apparatus leveling 
 
1. The clearance between the spindle and

friction support.  The PASCO apparatus i
pressure should be preset at about 10 psi
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Fig. 3.  Side view of rotational dynamics apparatus 

2. Arrange the Rotational Dynamics apparatus (see Fig. 3) so the air-bearing pulley extends over the 
edge of your lab table.  Check with your instructor if you are unsure.  

 
3. To ensure that the disk rotates with uniform velocity or acceleration, even with an eccentric load, the 

apparatus must be leveled accurately.  
 
4. Turn on the air with the top aluminum disk on the spindle.  If the disk on the apparatus is not made of 

aluminum, ask your instructor to put it on. 
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           Fig. 4.  View of the pin storage area. 

5. Place bubble level on top of the aluminum disk and verify that the apparatus is level.  If it is not, adjust 
the three leveling feet until it is. 

 
 
Activity 1-2:  Disk rotation 
 
1. The two disks can spin independently or 

together, or the upper disk can spin while the 
lower disk does not (see Fig. 3).  These 
options are controlled using the two valve pins 
that are provided with the unit.  When not in 
use, these pins can be stored in the valve pin 
storage holes on the top of the base (see 
Fig. 4).  Start with the pins in the storage 
holes. 
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2. Place one valve pin in the bottom disk valve, located next to the valve pin storage holes.  Give the 

upper disk a spin.  Notice that it lies firmly on the lower disk so the two disks spin together.  Remove 
the valve pin and notice how both disks drop onto the base plate. 

 
3. Replace the valve pin in the bottom disk valve and then place the remaining valve pin into the hole in 

the middle of the upper disk, as in the figure.  Now spin the disks in opposite directions.  Notice that 
the two disks now spin independently. 

 
4. Pull the valve pin from the center of the upper disk.  The upper disk drops onto the lower disk so that 

the disks now spin together, as a single rotating body.  This is the rotational equivalent of an inelastic 
collision.  You may find that the aluminum disk tends to float a bit, because it is so much lighter than 
the steel disk.  If so, reduce the air pressure slightly. 

 

The theoretical rotational inertia of the rotating disks (annular cylinder) is given by (see Fig. 2) 

2 2
1 2

1 (
2

)I M R R= + ,                                                             (6) 

where M is the mass of the disk, and R1 and R2 are the disk’s outer and inner radii, respectively.  The 
masses are  
 

Bottom stainless steel: 1,344 grams 
Top stainless steel: 1,357 grams 
Top aluminum:    464 grams 

 
 The geometric shape of the disks are not identical; however, within the accuracy of your 
measurement you can use for all three disks: 

1

2

6.32

0.79

cm

cm

R

R

=

=
 

5. Calculate (if you have not already done so) the rotational inertia of disks.  Everyone must do this! 
 
  rotational inertia I ________________________ kg·m2 (top stainless steel) 
 
  rotational inertia I ________________________ kg·m2 (bottom stainless steel) 
 
  rotational inertia I ________________________ kg·m2 (aluminum) 
 
 
 
INVESTIGATION 2: ROTATIONAL KINEMATICS AND TORQUE 
 
Activity 2-1   How Does Torque Affect An Object's Rotational Motion? 
 
 We want to verify the rotational analogue of the relationship between force and acceleration as given 
by Equation (6).  We will apply a constant torque to an aluminum disk by attaching a mass to a string 
wrapped around the disk and then hanging the mass over a frictionless pulley.  The constant force due to 
gravity acting on the mass (Fgravity = mg) is transferred to the disk by the string hanging over the pulley at 
a constant tension.   
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Prediction 2-1:  Explain what will happen to the disk when the mass hanging down over the pulley is 
released.  Does this represent a constant torque?   
 
 
 
 
 
 
 
Question 2-1:   If you have the means to measure the angular velocity of the disk as a function of time, 
how can you determine if the angular acceleration is constant? 
 
 
 
 
 
 
 The tension in the string causes a torque on the disk since the string is attached to the disk via a 
small pulley with a radius of 1.252 cm.  When the disk is released, it will start to rotate with constant 
angular acceleration as the mass falls with constant linear acceleration.  We will measure this angular 
acceleration by plotting the angular velocity of the disk over time.  Because ω= α t, if we fit a straight line 
to the angular velocity data, the slope of the line will give us the angular acceleration of the disk.  We will 
then see if this angular acceleration agrees with the angular acceleration calculated by solving the force 
equations for the disk and the mass. 
 
1. Remove the valve pin for the bottom disk so that the bottom disk does not rotate.  Make the 

measurements using the lighter, aluminum, top disk.  If the disk on the apparatus is not made of 
aluminum, ask your instructor to put it on. Do not replace the disks yourself! 

 
2. Cut a piece of thread about 135 cm in length. 

3.  Referring to Fig. 3, tie one end of the thread to the hole in the thread holder.  Place the thread holder 
in the recess of the small torque pulley, with the thread passing through the slot in the pulley.  Then 
use the thumbscrew to attach the pulley to the top of the rotating disk, with the flat side of the pulley 
facing up, so the thread holder is underneath the pulley.  Tighten the thumbscrew so the pulley is 
secure.  Make sure that the string is not caught under the pulley! 

 
Mass the “20 g” mass:  __________________ g 

 
4. Attach the 20 g mass to the other end of the thread.  When the thread is fully extended, the mass 

should almost touch the floor. 
 
5.  Open the experimental file Angular Velocity L9.2-1.  This will set up the computer to graph the angular         

velocity of the disk in deg/sec. 

6. Rotate the disk until the mass is approximately 90 cm above the floor.  Start the computer and   
immediately release the disk.  Stop the computer when the mass has fallen at least 80 cm. 

  
7. As the mass falls, the disk will rotate with constant angular acceleration and the angular velocity on 

the graph should increase linearly.  Using the mouse, select a region in the middle of the data where 
you are sure the mass was falling freely.  Click on the Fit icon on the graph toolbar and select Linear 
Fit.  Print a copy of the graph with Fit displayed.  Record the slope of the fit (m) here: 

 
 

Slope  _____________ deg/sec2. 
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8. Because the disk is rotating on a nearly frictionless layer of air, the only torque acting on it is from the 
tension in the string.  We can write the force and torque equations for the mass and the disk as: 

Forces on Mass :

Torques on disk : α

mg T ma

I

− =

τ =
   

where T is the tension in the string, m  is the mass, and a is the linear acceleration of the mass.  Solving 
the force equation for T gives T = mg - ma.  Using Equation (2) (because the mass is attached to the 
edge of the torque pulley, the magnitude of the linear acceleration of the mass is the same as the 
magnitude of the linear acceleration of the outer edge of the torque pulley) we can rewrite the torque 
equation above as: 

( )Tr mg m r r Iτ = = − α = α                                                        (7) 

where τ is the torque on the disk, T is the tension in the string, r is the radius of the torque pulley, and α 
is the angular acceleration of the mass.  Solving the above equation for α gives: 

( )2
mgr

I mr
α =

+
                                                                   (8) 

You calculated the rotational inertia previously, so calculate α using the expression above and compare 
with the value of the angular acceleration of the disk you obtained from your data.   

 α = _______________ rad/s2  (calculated) 

    α = _______________ rad/s2  (experimental) 

 Difference in α ___________ %    

Question 2-2:  How did your results compare?  If instead of angular velocity data you were given angular 
position data, what type of fit would you need to perform to find the angular acceleration of the disk? 
 
 
 
 
 
 
 
INVESTIGATION 3: CONSERVATION OF ENERGY 
 
Activity 3-1   Does Potential Energy Lost Equal Kinetic Energy Gained? 
 
We want to demonstrate that mechanical energy is conserved in the absence of non-conservative forces.  
We will apply a torque to a pulley attached to the aluminum disk via a thread attached to a small hanging 
mass and see if the potential energy lost by the mass as it falls is equal to the gain in the linear kinetic 
energy of the mass and the rotational kinetic energy of the disk.  The weight of the mass supplies a 
constant torque that accelerates the rotating disk.  [See the discussion in step 8 below to see that we do 
get a constant torque.]  When the disk is released, the mass descends, moving with constant linear 
acceleration and causing the disks and axle to rotate with constant angular acceleration. 
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1. Open the experimental file Conservation of Energy L9.3-1.  Two tables will be visible.  Table 1 
shows the state of the Accessory Photogate and Table 2 shows the Angular Position of the upper 
disk.  Data are recorded from the photogate whenever the gate changes state from unblocked to 
blocked or from blocked to unblocked.  To get a feel for this, start the computer and move your hand 
through the photogate a couple of times.  Notice that each time you block or unblock the photogate, 
the time of the event is recorded in Table 1.  Delete the data you just recorded.   

 
2. Turn on the air and rotate the disk so that the thread wraps around the torque pulley.  Place and 

adjust the position of the photogate on the floor so that the mass will pass through the photogate 
when released.  Start the computer, release the disk, and let the mass drop.  Stop the computer 
just after the mass has gone through the photogate.  There should be two data points in Table 1, one 
when the bottom of the mass blocked the gate and one when the top of the mass unblocked the gate 
as it went through.  In Table 2, you should see the angular position slowly increasing with time as the 
mass accelerated downward.  Delete all data and leave the photogate where it is as you will be using 
this setup for the remainder of this Investigation. [Note:  You have to move the “sliders” on the table to 
top before deleting the data.] 

 
3. Because mechanical energy is conserved as the mass falls, the initial potential energy of the hanging 

mass m is converted to kinetic energy.  After falling a distance s, the mass loses an amount of 
potential energy, mgs.  The mass has a translational kinetic energy due to its velocity v and rotational 
kinetic energy due to the upper disk rotating with an angular velocity ω .  For energy to be conserved, 
the following relation must hold:  

22

2
1

2
1 ωImvmgs +=                                                           (9) 

Now, v = ω r, where r is the distance from the axis where the torque is applied, i.e. the radius of the torque 
pulley.  You should be using the pulley with a radius of 12.7 mm. 

 Using the equations relating angular quantities to linear quantities, we can rewrite Equation (9) as 
2

2
2

2
2

1
2 2
1 (1 )
2

Ivmgs mv
r

Imgs mv
mr

= +

= +
.                                                 (10) 

where I is found using Eq. (6).  We will now perform an experiment to verify that mechanical energy is 
conserved by calculating and comparing the left hand and right hand sides of Eq. (10). 
 
4. In order to verify Eq. (10), we need to find v and s for a given run.  To find v, we could simply 

measure the length of the mass and divide it by the time it took to pass through the photogate.  But 
because of the finite size of the photogate optics, the mass appears to have a different length as it 
passes through. We need to measure this effective length before we can perform the experiment. 
Start the computer and allow the mass to drop from a height of about 15 cm above the photogate.  
Make sure to stop the computer just after the mass goes through the gate.  Repeat this procedure 3 
times, keeping the data for each run. 

 
5. We can use the data we have just taken to find the effective length of the mass as seen by the 

photogate.  The position of the mass at any given time can be determined by using the data of the 
angular position of the disk.  Arrange Tables 1 and 2 on the screen so that they both show the data 
from run #1.  Find the angular position of the disk at the exact time that the bottom of the mass 
blocked the photogate (this should be the first time point in Table 1 on the computer).  Interpolate 
between time points in Table 2 to obtain a better reading of the angle.  Now find the position at the 
time that the top of the mass left the photogate.  Enter these data in Table 3-1 below.  Do the same 
for Runs #2 and #3 
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Question 3-1:  It is important to know how to convert the measured angle difference to distance.  How do 
you do this?  Write down a conversion equation that allows you to convert ∆θ (rad) to length that the 
mass has fallen. 
 
 
 
 
 

Table 3-1.   Determination of Mass Effective Length through Photogate 
Trial Upper Position 

(deg) 

Lower Position 

(deg) 

Difference 

(deg) 

1    

2    

3    

Average                                                               

 
Average angle difference θ ________________ rad (convert average from deg to rad) 

 

                       Arc length rθ ________________ mm (see Question 3-1) 
 

       Mass effective length L ________________ mm 
 
Question 3-2:     Why do you think the measurement of the effective mass length is so critical?  Use the 
vernier calipers and measure the actual length of the mass.  Write it down below.  How does this compare 
to the effective length you just measured?  How will this effect your eventual velocity and kinetic energy 
determination?   
 
 Actual mass length ____________ mm 
 
 
 
 
 
 
6. You are now ready to perform the experiment to verify equation (10). Delete all the data from the 

previous runs.  Raise the mass to a height of approximately 80 cm above the photogate (it doesn’t 
matter exactly how high yet, this information will be extracted from the data).  Start the computer 
and quickly let go of the disk so the mass will fall.  You can now determine the average speed of the 
falling mass as it passes through the photogate by determining how long it takes the mass to move 
through the photogate (T) using the photogate data and the effective length (L) of  the mass that you 
just determined.  Enter this information below: 

 
Time mass blocked photogate:  T = _____________ ms 

 
Effective Length: L = _____________ mm  

 
Velocity:        v = L/T: _______________ m/s 
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7. We need to determine the height (distance) through which the mass falls to the nearest millimeter.  
(Technically, you need to measure the height to the point where the local velocity equals the average 
velocity while the mass passes through the photogate.  Remember that the mass continues to 
accelerate through the photogate.)  You can determine this height by finding the angular position at 
the point when the mass is halfway through the photogate with respect to time.  Find this time by 
taking the average of the two time points in the photogate state table on the computer.  Look up the 
angular position, which corresponds to this time making sure to interpolate between time points.  Note 
that the initial angular position was zero when you let go of the disk.  Use the conversion you derived 
earlier to turn the final angular position into the final position of the mass.  This will be the height that 
the mass fell.  Enter this value below. 

 
 Height mass falls s = _______________ m 
 
Question 3-3:  Why is it not necessary to measure the distance that the mass drops to the nearest 
0.1 mm?  Hint:  consider the comparison of how well you know KE and PE. How is this different from 
determining the effective length of the mass? 
 
 
 
 
 
 
 
8. Verify that mechanical energy is conserved by calculating and comparing the left hand and right hand 

sides of Eq. (10).  Enter your results in Table 3-2.  Note that by differentiating both sides of Eq. (10) 
with respect to time we can see that the linear acceleration of the mass (a = dv/dt = d2s/dt2) is 
constant in this situation and therefore the angular acceleration of the disk (α = ra) and the torque 
applied to the disk (τ = Iα) are also constant. 

 
Table 3-2: Comparing Potential Energy Lost and Kinetic Energy Gained 

 

Final Velocity (v) 

(m/s) 

 

Height (s) 

(m) 

 

Potential Energy Lost 

(J) 

Kinetic Energy Gained 

2
2

1 1
2

Imv
mr

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

    

 
Question 3-4:  What are your final results?  Discuss how well the kinetic and potential energies agree.  
What are possible sources of error? 
 
 
 
 
 
 
INVESTIGATION 4: CONSERVATION OF ANGULAR MOMENTUM 
 
Activity 4-1  Is Angular Momentum Conserved? 
 
Angular momentum, L = ωI , is conserved whenever there are no external torques.  In the case of 
rotating disks that engage each other, all torques are internal, and we expect to have conservation of 
angular momentum. 
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In this measurement, you will use the optical reader on the Rotational Dynamics apparatus, which counts 
the black bars on the disks as they pass.  Each LED comes on when the corresponding optical reader 
senses a black bar and goes off when it detects a white bar.  Using these data, the computer will display 
a graph of angular velocity vs. time. 
 
1. Remove the torque pulley and mass.  Ask your instructor to remove the top aluminum disk and 

replace it with the top stainless steel disk. Replace valve stems so both bottom and top disks rotate 
separately. 

 
2. Open experiment file Angular Momentum L9.4-1.  You will see a graph showing the angular velocity 

of each disk vs. time.  Ch 1 should show data from the upper disk and Ch 2 should show data from 
the lower disk.  Verify this by starting the computer and spin one of the disks while holding the other 
one still.  What happens when you reverse the direction of the spin? 

 
3. Perform the following four experiments.  Then calculate the initial and final angular momentum and 

determine whether it is conserved.  Enter your data and calculations in Table 4-1.  Note:  completing 
Table 4-1 is time consuming.  It is crucial for at least one team member to be working on these 
calculations throughout the experiments. 

 
a. Top disk spinning; bottom disk stationary:  Start the computer, hold the bottom disk 

stationary, and give the top disk a spin, so that its angular velocity is between 600 and 
800 deg/sec.  Wait for a couple of seconds then pull the valve pin from the top disk so that 
the top disk falls onto the bottom disk.  Wait for two full seconds and then stop the computer.  
Record the angular velocity of each disk just before and after releasing the valve.  You will 
get a better reading by finding a range of data points for each measurement and using the 
statistics function to find the mean of these values.  Enter your data in the table below. 

 
Question 4-1:  To what percentage accuracy do the initial and final angular momentum agree?  Is this 
good enough agreement?  Explain. 
 
 
 
 
 
 
 

b. Top and bottom disks spinning in the same direction but at different rates:  Perform the 
same procedure as in part a, but this time spin both disks in the same direction but at 
different rates, at least 200 deg/sec apart.  Enter your data into Table 4-1.  

 
Question 4-2:  To what percentage accuracy do the initial and final angular momentum agree?  Is this 
good enough agreement?  Explain. 
 
 
 
 
 
 

c.   Top and bottom disks spinning in opposite directions at different rates:  Spin both disks in 
opposite directions and at different rates.  Make sure to record the direction in which each disk 
is spinning, i.e. clockwise or counter-clockwise.  Since the sensors have no way of knowing 
which direction the disks are spinning, the angular velocity of each disk will be positive on the 
graph even though they are spinning in opposite directions.  Remember that this will make one 
disk’s angular momentum negative relative to the other’s.  Perform the same procedure as in 
part a and enter your data into Table 4-1. 
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Question 4-3:  To what percentage accuracy do the initial and final angular momentum agree?  Is this 
good enough agreement?  Explain. 
 
 
 
 
 

d. Top and bottom disks spinning in opposite directions at the same rate:  Try to spin the 
two disks at the same rate but in opposite directions.  Follow the same procedures as in 
part a and enter your data into Table 4-1. 

 
Table 4-1  Conservation of Angular Momentum 

 

For purposes of this calculation let Istainless steel (bottom) = Istainless steel (top).  Remember that the angular 
velocity ω can be negative.  You need to keep track of its sign.  Data Studio always indicates a positive 
number. 

 

 Part a Part b Part c Part d 

ω Initial Top     

ω Initial Bottom     

ω Final     

L Initial Total     

L Final     

L difference (%)     

 
Question 4-4:  What happened when you removed the pin?  To what percentage accuracy do the initial 
and final angular momentum agree?  Is this good enough agreement?  Explain. 
 
 
 
 
 
 
 
 
Question 4-5:  Discuss possible sources of error in this activity. 
 
 
 
 
 
 
 
 
 
 
 
 

Please clean up your lab area. 
 

Turn off the Rotational Dynamics apparatus, 
the timers, and the AIRFLOW. 
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