Activity P13: Buoyant Force (Force Sensor)

Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)
Archimedes’ Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

<table>
<thead>
<tr>
<th>Equipment Needed</th>
<th>Qty</th>
<th>Equipment Needed</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy Force Sensor (CI-6746)</td>
<td>1</td>
<td>Mass and Hanger Set (ME-9348)</td>
<td>1</td>
</tr>
<tr>
<td>Base and Support Rod (ME-9355)</td>
<td>1</td>
<td>Ruler, metric</td>
<td>1</td>
</tr>
<tr>
<td>Beaker, 1000 mL</td>
<td>1</td>
<td>String (SE-8050)</td>
<td>1 m</td>
</tr>
<tr>
<td>Calipers (SF-8711)</td>
<td>1</td>
<td>Support rod (ME-8736)</td>
<td>1</td>
</tr>
<tr>
<td>Clamp, right-angle (SE-9444)</td>
<td>1</td>
<td>Other</td>
<td>Qty</td>
</tr>
<tr>
<td>Cylinder, w/ hook (from ME-8569) *</td>
<td>1</td>
<td>Graduated cylinder</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>800 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetable oil (optional)</td>
<td>800 mL</td>
</tr>
</tbody>
</table>

What Do You Think?

Why is it easy to float in the ocean? In which would you feel a stronger buoyant force: a swimming pool filled with oil or with syrup?

Take time to answer the ‘What Do You Think?’ question(s) in the Lab Report section.

Background

Archimedes’ Principle states that the buoyant upward force on an object entirely or partially submerged in a fluid is equal to the weight of the fluid displaced by the object.

\[F_b = m_f g = \rho_f V g \]

where \(\rho_f \) is the density of the fluid, \(V \) is the submerged volume of the object, and \(g \) is the acceleration due to gravity.

The submerged volume is equal to the cross-sectional area, \(A \), multiplied by the submerged height, \(h \). So the buoyant force can be written as:

\[F_b = \rho_f (Ah) g \]

If the object is lowered into the fluid while the buoyant force is measured, the slope of the graph of \(F_b \) versus \(h \) is proportional to the density of the fluid.

Safety Reminder

- Follow the directions for using the equipment.

* See lecture demo lab for 1kg mass (at UVA)
For You To Do

Use the Force Sensor to measure the force on an object as it is lowered into water. Use ‘Keyboard Sampling’ to enter the depth values. Use DataStudio or ScienceWorkshop to plot the force versus submerged depth to obtain the density of the fluid.

PART I: Computer Setup

1. Connect the ScienceWorkshop interface to the computer, turn on the interface, and turn on the computer.
2. Connect the DIN plug of the Force Sensor to Analog Channel A.
3. Open the document titled as shown:

<table>
<thead>
<tr>
<th>DataStudio</th>
<th>ScienceWorkshop (Mac)</th>
<th>ScienceWorkshop (Win)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13 Buoyant Force.DS</td>
<td>P18 Buoyant Force</td>
<td>P18_BUOY.SWS</td>
</tr>
</tbody>
</table>

- The DataStudio document has a Workbook display. Read the instructions in the Workbook.
- The ScienceWorkshop document has a Graph display with Force versus Depth.
- Data recording is set for 1 Hz. Keyboard Sampling allows the user to enter the submerged depth in meters.

PART II: Sensor Calibration and Equipment Setup

1. Mount the Force Sensor on a horizontal rod with the hook end down.
2. Using the calipers, measure the diameter of the metal cylinder. From the diameter, calculate the radius and the cross-section area. Record the cross-section area in the Data Table in the Lab Report section. Recall:
 \[A = \pi R^2 \]
3. Hang the metal cylinder from the Force Sensor hook with a string.
4. Put about 800 mL of water into the beaker and place the beaker on the lab jack below the hanging cylinder. The bottom of the cylinder should be touching the water.
5. Position the metric ruler next to the edge of the lab jack. Note the initial height of the top of the lab jack.

UVA Question: Is it a good idea to measure the depth of the mass in the water by measuring the change in height of the lab jack as suggested in the PASCO lab? Can you determine a better way to measure this?
PART III: Data Recording

- Before recording data for later analysis, you may wish to practice using keyboard sampling to collect data.

 1. With the cylinder attached to the Force Sensor hook, press the *tare* button on the Force Sensor to zero the sensor.

 2. Record Force vs. Depth data as you submerge the cylinder.

In *DataStudio*, move the Table display so you can see it clearly.

- Click on the ‘Start’ button to start recording data. The ‘Start’ button changes to a ‘Keep’ and a ‘Stop’ button (✔ Keep). The Force will appear in the first cell in the Table display. Click the ‘Keep’ button to record the force value.

- Immerse the cylinder 5 millimeters (5 mm or 0.005 m) by raising the beaker of water 5 mm with the lab jack. Use the metric ruler to measure the distance that you raise the lab jack.

- Click the Keep button to record the next Force value at the depth of 0.005 m.

- Increase the depth of submersion by increments of 5 mm. After each increase in the submersion, wait for the force reading in the display to stabilize, then click the Keep button to record a Force value at the appropriate depth.

- Repeat the data recording procedure until the top of the cylinder is submerged. Stop data recording by clicking on the ‘Stop’ button. Run #1 will appear in the Summary window.

In *ScienceWorkshop*, click the ‘REC’ button to begin collecting data.

- The ‘Keyboard Sampling’ window will open. Move it so you can also see the Digits display. The default value for ‘Entry #1’ is 10.000.

- Because the cylinder is not submerged, type in ‘0’ as the depth. Click ‘Enter’ to record the depth and force values. The entered depth value will appear in the Data list.

- Immerse the cylinder 5 millimeters (5 mm or 0.005 m) by raising the beaker of water 5 mm with the lab jack. Use the metric ruler to measure the distance that you raise the lab jack.

- For ‘Entry #2’, type in ‘0.005’ (5 millimeters). Click ‘Enter’ to record the depth and force values.

- Increase the depth of submersion by increments of 5 mm. After each increase in the submersion, wait for the force reading in the Digits display to stabilize, then click the Enter button to record a Force value at the appropriate depth.

- Repeat the data recording procedure until the top of the cylinder is submerged. Stop data recording by clicking the ‘Stop Sampling’ button in the ‘Keyboard Sampling’ window.

- The ‘Keyboard Sampling’ window will disappear. ‘Run #1’ will appear in the Data List in the Experiment Setup window.
Analyzing the Data

1. Determine the slope of the Force vs. Depth Graph.

 • In *DataStudio*, click the ‘Scale to Fit’ button to rescale the Graph axes to fit the data. Next, click the ‘Fit’ menu button. Select ‘Linear’.

 • In *ScienceWorkshop*, click the ‘Autoscale’ button to rescale the Graph axes to fit the data. Click the ‘Statistics’ button to open the Statistics area on the right side of the Graph. In the Statistics area, click the Statistics Menu button. Select ‘Curve Fit, Linear Fit’ from the Statistics Menu.

2. Record the slope of the linear fit in the Data Table in the Lab Report section.

3. Calculate the density of water by setting the slope equal to $\rho A g$ and solving for ρ. Record the value for the density in the Data Table in the Lab Report section.

4. Compare the calculated value to the accepted value by calculating the percent difference.

 Record your results in the Lab Report section.
Lab Report - Activity P13: Buoyant Force

What Do You Think?
Why is it easy to float in the ocean? In which would you feel a stronger buoyant force: a swimming pool filled with oil or with syrup?

Data Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Cylinder</td>
<td></td>
</tr>
<tr>
<td>Slope (from graph)</td>
<td></td>
</tr>
<tr>
<td>Density of water (calculated)</td>
<td></td>
</tr>
<tr>
<td>Density of water (accepted)</td>
<td></td>
</tr>
</tbody>
</table>

Questions
1. How does your experimental value compare to the accepted value for the density of water? What is the percent difference?

2. Why was the Force Sensor zeroed after the cylinder was attached to the hook?
Optional
Substitute vegetable oil for the water in the beaker and repeat the experiment. Compare the result for the density of oil to a value calculated by weighing a known volume of oil.

Data Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Cylinder</td>
<td></td>
</tr>
<tr>
<td>Slope (from graph)</td>
<td></td>
</tr>
<tr>
<td>Density of oil (from slope)</td>
<td></td>
</tr>
<tr>
<td>Mass of beaker</td>
<td></td>
</tr>
<tr>
<td>Mass of beaker and oil</td>
<td></td>
</tr>
<tr>
<td>Volume of oil</td>
<td></td>
</tr>
<tr>
<td>Density of oil (mass/volume)</td>
<td></td>
</tr>
</tbody>
</table>

Optional Questions
1. How does the experimental value for the density of oil compare to the value determined by the mass/volume method? What is the percent difference?

2. Is vegetable oil less, more, or equally as dense as water?