PHYS 725 HW #1. Due 13 September 2001

1. Riley 5.4 Part (a):

Rescale:

r=a§, y=>bn;

then

Now let
n=sinf, dn = cosfdb

and we see
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Part (b): If we consider a slice of thickness dz at position z we see that
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so that the volume of the slice is
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We are to integrate this from z = —c to z = ¢; hence with z = ¢(,
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2. Riley 5.5

Part (a):
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Part (b):
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3. Riley 5.6
Part (a):
R
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Part (b):

R 2T
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. Riley 5.7

Note that the problem is wrongly stated. Moral homily # }2c¢ states
that you must be wary of formulas found in texts or journal articles.
This is an example.

The correct definition of the moment of inertia about an axis is

L[ am (2 7y’

where Z is any axis of rotation you choose. So for the cylinder we have
the moment about the symmetry axis is the same as for a disk, namely

1
L [dm (2 x 7 = S Ma?.

The moment of inertia about an axis | the symmetry axis and passing
through the center of mass can be obtained as

II:/dm:vxr /dmy+z)
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Notice that Riley’s answer is wrong.



5. Riley 3.4

(a) (Comparison test)

i 2sinnf Si 2 P
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(b) (Integral test)
o0 2 o0
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(c) (Integral test)

N1 N dx
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(d) (Weierstrass’s theorem)
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That is, we have a series of terms that decrease monotonically in
magnitude and alternate in sign, hence it converges.

(e) (Ratio test) Manifestly, since n! — n" it dominates n? for any
finite p. Thus the ratio of successive terms is

(n+1)" 1 1 p
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Or in other words, the radius of convergence is infinite.



6. Riley 3.5

(a) From the ratio test we see that the radius of convergence is 1 so
that the series converges for all |x| < 1. Of course we can sum the
series using
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and see that it goes bad at z = +1. Even for # = —1 the series

converges by Weierstrass’'s theorem, but is diverges for z < —1.
The answer is therefore —1 < x < 1.
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(b) > (sinz)" =

1
Clearly the series converges for —7/2 < x < w/2, diverges for
x = /2, and is indefinite for z = —7 /2.
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(c) The terms are all positive. They are increasing or constant for
x > 0 so we must have x < 0. However, the integral test gives

st 0o TR AN e
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hence we must have x < —1 for this to be finite. The case v = —1
is excluded by the fact that this is the harmonic series, known to
be divergent.
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we see immediately that for z > 0 the series is divergent, but for
x < 0, e < 1 so the series manifestly converges for x < 0.



(e) Clearly we must assume = < 0 since otherwise the terms are in-
creasing. In fact, by the comparison test we can see that v < —1
since for x = —1 the harmonic series is a lower bound. Let us
therefore apply the integral test to the case z < —1. We have
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However, for any positive power—say a = 1/|z|—it is true that
for large enough N, N® > In N so we know that the lower bound
diverges. In other words, there is no real value of x for which the
series converges.

(f) Riley 3.6: Manifestly,
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7. Riley 3.8: Let u = 0.5(a — b) and v = 0.5(a + b). Then a = u + v and
b= v — u. Assuming u is small in magnitue, we can write

a v+u 14+ u/v
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8. Riley 3.12:
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9. Riley 3.13:
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