Physics 751
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NOTE: This is just a quick review of the experimental basis for quantum mechanics, and some
of the early formulations. You don’t need to know the historical facts, of course, but some of
the physics arguments are worth recalling—for example, Bohr’s derivation of the Rydberg
constant from his model atom. If you’re interested in more details, check my modern physics
website at http:// www.phys.virginia.edu/classes/252/home.html , from which some of this
material is taken.

Why Do We Need Quantum Mechanics?

Just over 100 years ago, in the 1890’s, physics looked in pretty good shape. The beautiful
mathematical development of Newton’s mechanics, coupled with increasingly sophisticated
technology, predicted the movements of the solar system to incredible accuracy, apart from a
tiny discrepancy in the orbit of Mercury. It had been less than a hundred years since it was
realized that an electric current could exert a force on a magnet, but that discovery had led to
power stations, electric trains and a network of telegraph wires across land and under the oceans.
It had also been only a hundred years since it had been established that light was a wave, and
only forty years since Maxwell’s realization that the waves in a light signal were electric and
magnetic fields, satisfying a wave equation he was able to derive purely by considering electric
and magnetic field phenomena. In particular, he was able to predict the speed of light by
measuring the electrostatic attractive forces between charges and the magnetic forces between
currents.

At about the same time, in the 1860°s, Maxwell and Boltzmann gave a brilliant account of the
properties of gases by assuming that they were made up of weakly interacting molecules flying
about in a container, bouncing off the sides, with a statistical distribution of energies so that the
probability of a molecule having energy £ was proportional to ek being a universal constant
known as Boltzmann’s constant. Boltzmann generalized this result from a box of gas to any
system. For example, a solid can be envisioned classically as a lattice of balls (the atoms)
connected by springs, which can sustain oscillations in many different ways, each such mode can
be thought of as a simple harmonic oscillator, with reasonable approximations concerning the
properties of the springs, etc. Boltzmann’s work leads to the conclusion that each such mode of
oscillation, or degree of freedom, would at temperature 7 have average energy k7, made up of
¥2kT potential energy, Y2 kT kinetic energy. Notice that this average energy is independent of the
strength of the springs, or the masses! 4A// modes of vibration, which will vibrate at very different
rates, contain the same energy at the same temperature. This equal sharing is called the
Equipartition of Energy. It is not difficult to check this for a one-dimensional classical harmonic
oscillator, averaging the energy by integrating over all displacements and momenta
(independently) with the weighting factor e®*” (which of course needs to be normalized). The
result doesn’t depend on the spring constant or the mass. Boltzmann’s result gave an excellent
account of the specific heats of a wide range of materials over a wide temperature range, but
there were some exceptions, for example hydrogen gas at low temperatures, and even solids at
low enough temperatures. Still, it was generally felt these problems could be handled within the
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existing framework, just as the slightly odd behavior of Mercury was likely caused by a small
planet, named Vulcan, closer to the sun, and so very hard to observe.

Black Body Radiation

But there was one problem that was hard to get a grip on, an apparently blatant violation of the
equipartition of energy. Consider an oven with a small hole in the door, through which the
radiation inside is observed. This oven can be heated until it’s white hot. The radiation inside is
infrared at low temperatures, becoming visible light as the temperature increases. So, the oven’s
full of electromagnetic waves, satisfying Maxwell’s wave equation, with boundary conditions at
the walls of the oven, the electric field has to be essentially zero there, because the walls conduct
currents. Of course, the radiation originates in oscillating charges in the walls, using the same
analysis of Maxwell’s equations that gives the radiation form an antenna. Anyway, there is a set
of standing wave modes of electromagnetic vibrations inside the oven, just a three-dimensional
version of the series of allowed standing wave modes of vibration of a string fixed at both ends.
So, we should be able to find the energy density of these waves using the same ideas that worked
pretty well for the specific heats of solids and gases, that is to say, assume there’s k7 of energy in
each mode of vibration. (This is /2kT of kinetic energy, "2kT of potential energy for each
independent direction of vibration.)

But—this leads to disaster. The problem is that there are infinitely many modes of vibration of
the electromagnetic field in an oven. There is no upper limit to the number of wiggles the wave
can have between the walls. So, if we take AT in each mode, we deduce that the oven contains an
infinite amount of energy, and radiates an infinite amount through our small hole. Furthermore,
this analysis gives no clue as to why the color we see changes with temperature. Evidently,
equipartition of energy isn’t working in this case. There’s only a finite amount of energy in the
oven—and at low temperatures there’s no energy at all in the modes corresponding to visible
light, although that changes as things get hotter.

In the 1890’s, German experimentalists measured the energy density as a function of wavelength
to great precision, it’s called the black body radiation spectrum. A theorist, Planck, found a
mathematical formula that fitted this curve exactly,
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He did not at first have any theoretical justification for this formula, but it was a very accurate fit
to some very precise experiments for a suitable value of the constant 4, which we discuss in a
moment.

Factoring out the number of modes of oscillation in the frequency range df, Planck’s formula
gives the average energy per mode to be
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For low frequencies, if << kT, this correctly gives kT per mode.



But, for higher frequencies it’s clear that the oscillators are not getting their “fair share” k7" of
energy. Somehow, the oscillating charges in the walls are not radiating so much energy at the
high frequencies. The only way Planck could derive the formula theoretically was by making a
weird assumption: he assumed that the oscillating charges in the walls could not just radiate
energy continuously, as Maxwell’s equations would predict (and as was known to be true for
ordinary antennas) but were only allowed to radiate energy in chunks he called quanta.
Furthermore, the amount of energy in one quantum depended on the frequency of the oscillation,
in fact linearly: for frequency f, the quantum has energy /f, where /4 is the constant introduced
into the formula above, now known as Planck’s constant. It follows that the oscillators
themselves could only be oscillating with energies that form a ladder with steps /f apart, above
some lowest energy which would be their energy at absolute zero temperature.

The formula follows if we assume the oscillating field component in the oven having frequency
fcan only have a whole number of quanta of energy, that is to say, its energy must be one of: 0,
hf, 2hf, 3hf, ... 1f we further assume that the relative probability of it having energy E is ¢ “*”
then its relative probabilities of having energy 0, Af; 2hf, ... are in the ratio 1: e™* : ¢/ etc.
The actual probabilities are given by dividing these relative probabilities by the sum of all of
them. They clearly are the terms of a geometric series, so their sum is just 1/(1 - ¢”*7). So, to
find the average energy in the oscillator, we take the possible energies 0, Af, 2Af, 3hf, ... and
weight each of them with their probability of occurring, that is, we must find

0-1+hf - 4 2hf W 4
and divide the sum by 1/(1 - ¢™*7),

So, Planck’s quantum assumption explains the observed black body radiation curve. It also gives
a qualitative explanation of the change in color of the radiated light as the temperature is
increased. The oscillators in the walls derive their energy from the heat vibrations of
neighboring molecules: typically, such a vibration has energy of order k7, with probabilities of
more energy going down as ¢™*”.  This means that if the potentially radiating oscillator can only
absorb energies in quanta Af, if kT << hf, it will be very unlikely to absorb any energy, and
therefore very unlikely to radiate. In the three-dimensional oven, the number of standing wave

oscillations in a small frequency range Af increases with f'as £, so we find that the maximum

radiation intensity occurs at a frequency f such that 4f" is of order k7. Therefore, as the
temperature increases, the frequency at which the most intense radiation occurs increases, and
hence the color moves from red to blue.

The Photoelectric Effect

If light shines on certain metals, electrons are emitted. This is the photoelectric effect. If the
metal is in air, the electrons bounce off air molecules and are almost certainly rapidly
reabsorbed, but if the metal surface is in a vacuum, the electrons can fly away, and in a vacuum
tube they can be collected by another piece of metal, and light can cause a current to flow, the
origin of the photoelectric cell.



In 1902, Lenard studied how the energy of the emitted photoelectrons varied with the intensity of
the light. He used a carbon arc light, and could increase the intensity a thousand-fold. The
ejected electrons hit another metal plate, the collector, which was connected to the cathode by a
wire with a sensitive ammeter, to measure the current produced by the illumination. To measure
the energy of the ejected electrons, Lenard charged the collector plate negatively, to repel the
electrons coming towards it. Thus, only electrons ejected with enough kinetic energy to get up
this potential hill would contribute to the current. Lenard discovered that there was a well-
defined minimum voltage that stopped any electrons getting through, we’ll call it Vip. To his
surprise, he found that V., did not depend at all on the intensity of the light! Doubling the light
intensity doubled the number of electrons emitted, but did not affect the energies of the emitted
electrons. He also discovered, by using light of different colors, that the maximum electron
energy did increase as the frequency of the incident light increased.

Einstein Suggests an Explanation

In 1905 Einstein gave a very simple interpretation of Lenard’s results. He just assumed that the
incoming radiation should be thought of as quanta of frequency Af, with fthe frequency. In
photoemission, one such quantum is absorbed by one electron. If the electron is some distance
into the material of the cathode, some energy will be lost as it moves towards the surface. There
will always be some electrostatic cost as the electron leaves the surface, this is usually called the
work function, . The most energetic electrons emitted will be those very close to the surface,
and they will leave the cathode with kinetic energy

E=hf-W.

On cranking up the negative voltage on the collector plate until the current just stops, that is, to
Vsop, the highest kinetic energy electrons must have had energy eV, on leaving the cathode.
Thus,

eVstop = hf‘ W

Thus Einstein’s theory makes a very definite quantitative prediction: if the frequency of the
incident light is varied, and V., plotted as a function of frequency, the slope of the line should
be h/e.

It is also clear that there is a minimum light frequency for a given metal, that for which the
quantum of energy is equal to the work function. Light below that frequency, no matter how
bright, will not cause photoemission.

Millikan’s Attempts to Disprove Einstein’s Theory

If we accept Einstein’s theory, then, this is a completely different way to measure Planck’s
constant. The American experimental physicist Robert Millikan, who did not accept Einstein’s
theory, which he saw as an attack on the wave theory of light, worked for ten years, until 1916,
on the photoelectric effect, to disprove Einstein’s theory. He even devised techniques for
scraping clean the metal surfaces inside the vacuum tube. For all his efforts he found
disappointing results (for him!): he confirmed Einstein’s theory, measuring Planck’s constant to



within 0.5% by this method. One consolation was that he did get a Nobel prize for this series of
experiments.

The point to be emphasized is that the same value for Planck’s constant, 6.6x107* Joule.sec,
emerges from two completely different experiments: the measurement of black body radiation,
and measuring energies of emitted electrons in the photoelectric effect. This is clearly a general
property of electromagnetic radiation, and is confirmed by many later experiments, for example
Compton scattering, in which light scatters off electrons. By measuring the energy change and
momentum change of the electron, it is found that a single quantum of light was scattered. (At
very high energies, more particles may be generated.)

The Nature of Light

It is firmly established experimentally that the propagation of light is well described by a wave
equation, which in fact is not difficult to derive from Maxwell’s equations:

- 1 0E

VzE_c_2 o1 0

For a plane wave moving in the x-direction this reduces to
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The monochromatic solution to this wave equation has the form

E(x,t) — Evoei(kx—(ot) '

(Another possible solution is proportional to cos (kx — a)t). We shall find that the exponential

form, although a complex number, proves more convenient. The physical electric field can be
taken to be the real part of the exponential for the classical case.)

Applying the wave equation differential operator to our plane wave solution
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If the plane wave is a solution to the wave equation, this must be true for all x and ¢, so we must
have

w=ck .

Solving this equation for boundary conditions like an antenna can be quite challenging, but all
we need consider at the moment is some illustration of diffraction. We take the case of a double
slit experiment: if a plane wave encounters a barrier with two equal narrow parallel slit



openings, the transmitted wave reaching a screen some distance further on will show a series of
bright and dark stripes parallel to the slits. This pattern can be quantitatively accounted for. The
two slits transmit radiation in phase with each other. At each point on the screen, the electric
field vector from slit 1 must be added to the electric field vector from slit 2. At a point on the
screen equidistant from the two slits, the electric field vectors will be equal. Moving away from
that point in a direction perpendicular to the slits we will reach a point where the field from one
slit is exactly out of phase with the field from the other slit—the screen will be dark.

In fact, the intensity if the light at any point on the screen is proportional to |Eq|’.

Now consider what happens as we make the light dimmer and dimmer. How easy is it to see this
diffraction pattern? Eventually we need to soup up our detection apparatus. We replace our
screen and visual inspection with a series of photodetectors. Experimentally, we find that, just as
in the photoelectric effect, our detectors will only detect quanta, just as if the light were made up
of particles, photons. Suppose now we dim the light so that our photodetectors only detect one
photon per minute coming through the slits. If we record where each photon lands, and build up
a picture, we find the very same pattern of light and dark stripes that we saw with bright light.

In other words, if we send through one photon, we can’t predict where it will land, but if we send
through a thousand, we will begin to discern the stripes. The best we can do for one photon is to
say it will more probably land where the solution to Maxwell’s wave equation gives a large |Eo[*.
That is to say, |[Eq(x)| is proportional to the probability of the photon being at x.

But this means each photon must have gone through both slits! The probability distribution for a
single photon is given by the stripes, and the distance between the stripes depends on the
distance between the slits. The photon, therefore, knows about both slits. So the bottom line is:
to find where one photon will be, solve the wave equation to find the electric field everywhere on
the screen. The probability of the photon landing at any particular point is proportional to |Eo|” at
that point.

To illustrate how weird this really is, consider a beam of photons split into two by a half silvered
mirror, the two half-beams than follow widely separated paths until they are reunited by a
suitable sequence of mirrors to interfere with each other. Sending one photon at a time, we will
eventually build up a diffraction pattern of some sort. So if we think of the initial photon as a
“wave packet” it will split into two half “wave packets” which will finally interfere with each
other. Now suppose I put 100% efficient photon detectors on both paths. IfI send photons
through the apparatus one at a time, I get a series of clicks from the two detectors: path 1 clicks,
path 1 clicks again, path 2 clicks, etc.: a random series. I never get both clicking with one
photon. (We can dim the light enough so that the photons are far apart, that is, they definitely
come one at a time.) What does this tell us about the nature of the wavefunction?

You might be inclined to think that the photon goes at random, half the time it goes along one
path, half the time the other. That is to say, the photon really is on one of the paths, we just don’t
know which until we detect it, and the wavefunction represents our ignorance. We do know that
once we detect the photon on one path, there’s zero probability of finding it on the other path—
so that part of the wavefunction has gone! But was it really there in the first place for that



particular photon? Yes: the other half wavepacket must have been there, because if I hadn’t
captured the photon with a detector in the way, the two half wavefunctions would have gone on
to interfere with it to give the diffraction pattern. So this line of thinking is wrong: we cannot say
that the photon “really is” on one of the two paths before we detect it.

The Nature of Matter

By the 1890’s and early 1900’s, most scientists believed in the existence of atoms. Not all—the
distinguished German chemist Ostwald didn’t, for example. But nobody had a clear picture of
even a hydrogen atom. The electron had just been discovered, and it was believed that the
hydrogen atom had a single electron. It was suggested that maybe the electron went in circles
around a central charge, but nobody believed that because Maxwell had established that
accelerating charges radiate, so it was assumed that a circling electron would rapidly loose
energy, spiral in to the center, and the atom would collapse. Instead, it was thought, the
hydrogen atom (which was of course electrically neutral) was a ball of positively charged jelly
with an electron inside, which would oscillate when heated, and emit radiation. Rough
calculations, based on the accepted size of the atom, suggested that the radiation would be in the
visible range, but no-one could remotely reproduce the known spectrum of hydrogen.

The big breakthrough came in 1909, when Rutherford tried to map the distribution of positive
charge in a heavy atom (gold) by scattering alpha particles from it. To his amazement, he found
the positive charge was all concentrated in a tiny nucleus, with a radius of order one ten-
thousandth that of the atom. This meant that after all the electrons must be going in some kind of
planetary orbits, and the Maxwell’s equations prediction of radiation didn’t apply, just as it

didn’t always apply in black body radiation.

The Bohr Atom

The Danish theorist Niels Bohr was visiting Manchester at the time Rutherford did this
experiment, and Bohr decided that there must be certain allowed sets of electron orbits in the
atom where the classical acceleration radiation didn’t occur: he called them “stationary states”.
The lowest energy stationary state would be the ground state of the atom, the others would
eventually go to that state by emitting photons corresponding to energy differences between
states.

But Bohr was of the opinion that looking at the very complex spectra emitted by heated atoms
would never be helpful—he remarked that it would be like trying to understand fundamental
biology by studying the colors of butterfly wings.

He changed his mind in February 1913, when a casual conversation with the spectroscopist H. R.
Hansen revealed that one pattern 4ad been discerned in the apparent chaos of spectral lines. In
particular, Hansen (a colleague and former classmate of Bohr) showed him Balmer's formula for
hydrogen. Balmer was a math and Latin teacher at a girls’ school in Switzerland, and had found
his formula in the 1880’s.

Balmer's formula is:
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for the sequence of wavelengths of light emitted, with n = 3, 4, 5, 6 being in the visible, the lines
used by Balmer in finding the formula. Hansen would doubtless have informed Bohr that the 1/4
could be replaced by 1/m*, with m another integer. The constant appearing on the right hand side
is called the Rydberg constant, Ry = 109,737 cm™. (This is the modern value—Balmer got it
right to one part in 10,000, about the limit of spectral measurements at the time.)

Bohr said later: “As soon as I saw Balmer's formula, the whole thing was immediately clear to
me.” What he saw was that the set of allowed frequencies (proportional to inverse wavelengths)
emitted by the hydrogen atom could all be expressed as differences. This immediately suggested
to him a generalization of his idea of a “stationary state” lowest energy level, in which the
electron did not radiate. There must be a whole sequence of these stationary states, with
radiation only taking place as the atom jumps from one to another of lower energy, emitting a
single quantum of frequency f such that

hf=E,- En,
the difference between the energies of the two states.

Evidently, from the Balmer formula and its extension to general integers m, n, these allowed
non-radiating orbits, the stationary states, could be labeled 1, 2, 3, ..., n, ... and had energies

E,=-hcR, /n’
using A f = c and the Balmer equation above.

The energies are of course negative, because these are bound states, and we take the zero of
energy to be where the two particles are at rest infinitely far apart.

Bohr was very familiar with the dynamics of simple circular orbits in an inverse square field. He
knew that if the energy of the orbit was - hcRy; /n”, that meant the kinetic energy of the electron,
V2 2 :

Yamv™ = hcRy /n”, and the potential energy would be
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It immediately follows that the radius of the n™ orbit is proportional to %, and the speed in that
orbit is proportional to 1/n.

It then follows that the angular momentum of the n™ orbit is just proportional to n: and Bohr
knew that Planck’s constant, the basis of quantum theory had the dimensions of angular
momentum!



Evidently, then the angular momentum in the n™ orbit was nKh, where A is Planck’s constant and
K is some multiplying factor, the same for all the orbits, still to be determined.

In fact, the value of K follows from the results above. Ry, m, h, and c are all known quantities
(Ru being measured experimentally by observing the lines in the Balmer series) so the above
formulas immediately give the electron's speed and distance from the nucleus in the n™ orbit, and
hence its angular momentum. Therefore, by putting in these experimentally determined
quantities, we can find K.

Bohr’s Semiclassical Argument to Fix the Quantum of Angular Momentum

However, Bohr found a clever theoretical way to determine Ry from his model: by equating his
prediction of the frequency emitted when an electron goes from one orbit to another in a very
large atom with the classical prediction—which would be just the orbital frequency of the
electron, how many times per second it goes around, he deduced K =1/27, and from that the

Rydberg constant that appeared before is here given in terms of 4, m and e. The rather abstract
argument that the quantum predictions must match the known classical results for large slow
systems actually fixes the Rydberg constant.

His argument goes as follows: for the circular orbits

With the angular momentum quantized, for the n™ orbit:
mv r, =nKh,

where 4 is Planck’s constant, 7 an integer, K the unknown multiplying factor (ok, fixed by
experiment, but we’re finding it independently).

From this quantization condition we can find the radius, and hence the energy, of the n™ orbit:
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where v is the frequency of the emitted photon on jumping down one quantum number.

In the classical limit of large n, v must match the orbital frequency of the electron, since
Maxwell’s equations will be valid.

That is,
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Comparing the two expressions, we see that they agree if K =1/27.

Putting K =1/27 into the energy level formula,
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Now the Rydberg constant is defined by

E, =-hcR, /n’
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This formula was found to be correct within the limits of experimental error in measuring the
quantities on the right.

so the Bohr model predicts that

But few people believed his theory. For one thing, it soon became apparent that in the spectra of
some stars (actually including the sun) there were spectral lines apparently corresponding to half
the angular momentum quantum. How could that be?

Bohr’s response was that these lines must be from ionized helium, not hydrogen. A neutral
helium atom has two electrons, a singly-ionized helium atom has just one electron, but the
nucleus has a charge twice that of the hydrogen nucleus, so the factor e* in the Rydberg constant
is replaced by 4¢”, which leads to the observed result. But then a spectroscopist called Fowler
did some very precise measurements, and found that actually the Ry for these new lines
corresponded to a factor of 4.0016. How could Bohr explain that?
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Bohr pointed out that at this level of precision, the finite mass of the nucleus must be taken into
account by using a reduced mass for the electron. This gives just the right factor. This result
greatly impressed Einstein, who concluded that Bohr must be on the right track.

Remark: the Bohr Atom is Still Important!

Although, as we shall see shortly, Bohr’s semiclassical analysis has long been replaced by
Schrédinger’s wave function, there are recent experiments in atomic physics where the classical
approach provides valuable insight. In particular, so-called Rydberg atoms, which are atoms with
one electron in a spatially large orbit (large n, weakly bound), act a lot like classical systems.
Such atoms can be ionized by microwave fields. For a considerable range of parameters, the
onset of this ionization can be accounted for by ignoring quantum mechanics altogether, and
interpreting ionization as the onset of chaotic motion in the classical driven system! (And, the
standard perturbation theoretic methods of quantum mechanics don’t work for this system
anyway, because the perturbing microwave electric field is of the same order of magnitude as the
atom’s electric field at these large orbits.) We should mention that, counterintuitively, quantum
mechanics does become important again at very large n (or high microwave frequency), where
some tricks from condensed matter physics have been used successfully to interpret the
experiments. This is a rich subject: qualitatively different phenomena occur as the ratio of
microwave frequency to orbital frequency is varied. See Physics Reports, 201, 1 (1991), and
very recent experiments (2004) by Tom Gallagher and others here at Virginia.

Prince Louis de Broglie Gets His Ph.D.

The next real advance in understanding the atom came from an unlikely quarter—a student
prince in Paris. Prince Louis de Broglie was a member of an illustrious family, prominent in
politics and the military since the 1600’s. Louis began his university studies with history, but his
elder brother Maurice studied x-rays in his own laboratory, and Louis became interested in
physics. He worked with the very new radio telegraphy during the war.

After the war, de Broglie focused his attention on Einstein's two major achievements, the theory
of special relativity and the quantization of light waves. He wondered if there could be some
connection between them. Perhaps the quantum of radiation really should be thought of as a
particle. It had been known for a long time that light waves carry momentum: this is famously
demonstrated by the “radiometer”, a small “windmill” in a vacuum, with vanes silver on one side
and blackened on the other. If the vacuum is good, the radiometer begins to rotate when exposed
to light because the light bouncing off the silvered side delivers twice the momentum of the light
absorbed by the blackened side. (It should be added that cheap versions of this device have poor
vacua, and the heated gas near the blackened side tends to push the vanes the wrong way.)

In fact, it follows from Maxwell’s equations that the momentum density of a light beam is
related to its energy density by £ = cp. We would therefore expect this same energy-momentum
relationship to be true for the photons of which the light beam is composed. Now, from special
relativity we know that all particles have an energy-momentum relationship £ = my’c* + ¢*p?,
where my is the rest mass of the particle. The only way this can be the same as £ = ¢cp is if my =
0, or, at least, if my is so small that all our observations are on particles having kinetic energy so
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far in excess of their rest energy that the tiny mass is not detectable. De Broglie suspected that
the photon did have a very tiny nonzero rest mass, so that if the speed of a sufficiently low
energy quantum could be measured, it would be found to be less than c. On this point he was
wrong (as far as we know!) Nevertheless, it was a very valuable conceptual breakthrough to
think of the quantum of radiation as a particle, knowing full well that radiation is a wave. In
fact, his incorrect idea that the photon (as we now call the light quantum) had a rest mass led him
to analyze the relationship between particle properties and wave properties by transforming to
the rest frame of the photon, and he discovered that the energy and momentum of the particle
were related to the frequency and wavelength of the wave by:

E=hf, p=hlA

Of course, the first condition is the Planck-Einstein quantization, and the second follows trivially
from it if we take £ =cp and Af =c. But de Broglie showed it was more generally true—it

worked even if the photon had a rest mass.

Having decided that the photon might well be a particle with a rest mass, albeit very small, it
dawned on de Broglie that in other respects it might not be too different from other particles,
especially the very light electron. In particular, maybe the electron also had an associated wave.
The obvious objection was that if the electron was wavelike, why had no diffraction or
interference effects been observed? But there was an answer. If de Broglie’s relation between
momentum and wavelength, p =4/ A, also held for electrons, the wavelength was sufficiently

short that these effects would be easy to miss. As de Broglie himself pointed out, the wave
nature of light isn’t very evident in everyday life, or in ray tracing in geometrical optics. He
suspected the apparently pure particle nature of electronic trajectories was analogous to the
apparent straight-line propagation of rays of light, over distance scales much greater than the
wavelength.

However, the wavelike properties should be important on an atfomic scale. No progress had been
made in a decade in understanding why the electronic orbits in the Bohr atom were restricted to
integral values of the angular momentum in units of 4. But if the electron were in some sense a
wave, it would be very natural to restrict the orbits to those of standing waves, for otherwise the
electron wave on going around the orbit would interfere with itself destructively.

Suppose now the electron, having momentum p, is moving in a circular orbit of radius . Then

for a standing wave, a whole number of wavelengths must fit around the circle, so for some
integer n, nA =2zr. Putting this together with p=h/ A, we find:

2rr=nA=nh/p
SO
L=pr=nh/2r.

The “standing wave” condition immediately gives Bohr’s quantization of angular momentum!
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This was the prince’s Ph. D. thesis, presented in 1924. His thesis advisor was somewhat taken
aback, and wasn’t sure if this was sound work. He asked de Broglie for an extra copy of the
thesis, which he sent to Einstein. Einstein wrote shortly afterwards: “I believe it is a first feeble
ray of light on this worst of our physics enigmas”. The prince got his Ph. D.

An Accident at the Phone Company Makes Everything Crystal Clear

There was an accident at the Bell Telephone Laboratories in April 1925. Clinton Davisson and
L. H. Germer, looking for ways to improve vacuum tubes, were watching how electrons from an
electron gun in a vacuum tube scattered off a flat nickel surface. Suddenly, while the experiment
was running and the nickel target was very hot, a bottle of liquid air near the apparatus exploded,
smashing one of the vacuum pipes, and air rushed into the apparatus. The hot nickel target
oxidized immediately. The layer of oxide made their target useless for further investigations.
They decided to clean off the oxide by heating the nickel in a hydrogen atmosphere then in
vacuum. After doing this for a prolonged period, the nickel looked good, and they resumed the
investigation.

To their amazement, the pattern of electron scattering from the newly cleaned nickel target was
completely different from that before the accident. What had changed? On examining their
newly cleaned crystal carefully, they found a clue. The original target was polycrystalline—
made up of a multitude of tiny crystals, oriented randomly. During the prolonged heating of the
cleaning process, the nickel had re-crystallized into a few large crystals.

To quote from their paper: “It seemed probable to us from these results that the intensity of
scattering from a single crystal would exhibit a marked dependence on crystal direction, and we
set about at once preparing experiments for an investigation of this dependence. We must admit
that the results obtained in these experiments have proved to be quite at variance with our
expectations. It seemed likely that strong beams would be found issuing from the crystal along
what may be termed its transparent directions—the directions in which the atoms in the lattice
are arranged along the smallest number of lines per unit area. Strong beams are indeed found
issuing from the crystal, but only when the speed of bombardment lies near one or another of a
series of critical values, and then in directions quite unrelated to crystal transparency.

“The most striking characteristic of these beams is a one to one correspondence ...which the
strongest of them bear to the Laue beams that would be found issuing from the same crystal if
the incident beam were a beam of x-rays. Certain others appear to be analogues ... of optical
diffraction beams from plane reflection gratings—the lines of these gratings being lines or rows
of atoms in the surface of the crystal. Because of these similarities ... a description ... in terms of
an equivalent wave radiation ... is not only possible, but most simple and natural. This involves
the association of a wavelength with the incident electron beam, and this wavelength turns out to
be in acceptable agreement with the value #/mv of the undulatory mechanics, Planck's action
constant divided by the momentum of the electron.

“That evidence for the wave nature of particle mechanics would be found in the reaction between
a beam of electrons and a single crystal was predicted by Elsasser two years ago—shortly after
the appearance of L. de Broglie's original papers on wave mechanics.”
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The above quotes are from Physical Review 30, 705 (1927).

It should be added that the two-slit diffraction pattern is of course exhibited by a beam of
electrons, has been observed experimentally many times, and has precisely the same form as that
for light. Electrons and photons generate interference patterns that are identical—although the
short wavelength of the electrons used presents a challenge! A double slit used by C. Jonsson in
1961 consisted of slits 0.5 microns wide 1-2 microns apart in copper foil. See D. Brandt and S
Hirschi, Am. J. Phys. 42, 5 (1974). (This reference from French and Taylor’s Introduction to
Quantum Physics.)



