
The Simple Harmonic Oscillator 
Michael Fowler 
University of Virginia 

Einstein’s Solution of the Specific Heat Puzzle 
The simple harmonic oscillator, a nonrelativistic particle in a potential ½Cx2, is an 
excellent model for a wide range of systems in nature.  In fact, not long after Planck’s 
discovery that the black body radiation spectrum could be explained by assuming energy 
to be exchanged in quanta, Einstein applied the same principle to the simple harmonic 
oscillator, thereby solving a long-standing puzzle in solid state physics—the mysterious 
drop in specific heat of all solids at low temperatures. Classical thermodynamics, a very 
successful theory in many ways, predicted no such drop—with the standard equipartition 
of energy,  ½kT in each mode, the specific heat should remain more or less constant as 
the temperature was lowered (assuming no phase change).  To explain the anomalous low 
temperature behavior, Einstein assumed each atom to be an independent (quantum) 
simple harmonic oscillator, and, just as for black body radiation, he assumed the 
oscillators could only absorb or emit energy in quanta.  Consequently, at low enough 
temperatures there is rarely sufficient energy in the ambient thermal excitations to excite 
the oscillators, and they freeze out, just as blue oscillators do in low temperature black 
body radiation.  Einstein’s picture was later somewhat refined—the basic set of 
oscillators was taken to be standing sound wave oscillations in the solid rather than 
individual atoms (making the picture even more like black body radiation in a cavity) but 
the main conclusion—the drop off in specific heat at low temperatures—was not 
affected.   

Schrödinger’s Equation and the Ground State Wave Function 
The classical equation of motion for a one-dimensional simple harmonic oscillator with a 
particle of mass m attached to a spring having spring constant C is  
 

m d x
dt

Cx
2

2 = −
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The solution is 
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and the momentum p = mv has time dependence 
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The total energy  is clearly constant in time.   
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It is often useful to picture the time-development of a system in phase space, in this case 
a two-dimensional plot with position on the x-axis, momentum on the y-axis. For 



 2

dimensional consistency, we would plot mω x against p.  It is evident that in these 
variables, the point representing the system in phase space moves clockwise around a 

circle of radius 2mE  centered at the origin. 
 
Note that in the classical problem, we could choose any point x, p, place the system there 
and it would then move in a circle about the origin.  In the quantum problem, on the other 
hand, we cannot specify the initial x, p precisely, because of the uncertainly principle. 
The best we can do is to place the system initially in a small cell in phase space, of size 

.  In fact, we shall find that in quantum mechanics, phase space is always 
divided into cells of essentially this size for each pair of variables.  

/ 2x p∆ ⋅∆ =

 
From the expression for total energy above, the Schrödinger equation for the quantum 
oscillator follows in standard fashion: 
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What will the solutions to this Schrödinger equation look like?  Since the potential 
½mω2 x2 increases without limit on going away from x = 0, no matter how much kinetic 
energy the particle has, if it gets far enough from the origin the potential energy 
dominates, and the (bound state) wavefunction will decay increasing rapidly as x 
increases further.  (Obviously, for a real physical oscillator there is a limit on the height 
of the potential—we will assume that limit is much greater than the energies of interest in 
our problem.)   
 
We know that when a particle penetrates a barrier of constant height V0  (greater than the 
particle’s kinetic energy) the wave function decreases exponentially into the barrier, as 

, where e x−α α = −2 0
2m V E( ) / .  But, in contrast to this constant height barrier, the 

“height” of the simple harmonic oscillator potential continues to increase as the particle 
penetrates to larger x.  Obviously, in this situation the decay will be faster than 
exponential.  If we (rather naïvely) assume it is more or less locally exponential, but with 
a local α varying with V0, neglecting E relative to V0  in the expression for α suggests 

that α itself is proportional to x, so maybe the wavefunction decays as e ?   x−( )constant 2

 

To check this idea, we insert 
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to find 
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The ψ(x) is just a factor here, and it is never zero, so can be cancelled out.  This leaves a 
quadratic expression which must have the same coefficients of x0, x2 on the two sides, 
that is, the coefficient of x2 on the left hand side must be zero:  
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This fixes the wave function.  Equating the constant terms fixes the energy: 
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So the conjectured form for the wave function is in fact the exact solution for the lowest 
energy state!  (It’s the lowest state because it has no nodes.)  
 
Also note that even in this ground state the energy is nonzero, just as it was for the square 
well.  The central part of the wave function must have some curvature to join together the 
decreasing wave function on the left to that on the right.  This “zero point energy” is 
sufficient in one physical case to melt the lattice—helium is liquid even down to absolute 
zero temperature (checked down to microkelvins!) because the wave function spread 
destabilizes the solid lattice that will form with sufficient external pressure.    

Higher Energy States 

It is clear from the above discussion of the ground state that 
b

mω
=

 is the natural unit 
of length in this problem, and ω  that of energy, so to investigate higher energy states 
we reformulate in dimensionless variables,  
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b

ξ ε
ω
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Schrödinger’s equation becomes 
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Deep in the barrier, the ε term will become negligible, and just as for the ground state 

wave function, higher bound state wave functions will have  behavior, multiplied by 
some more slowly varying factor. 

2 / 2e ξ−
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The standard approach to solving the general problem is to factor out the  term,  
2 / 2e ξ−

  
2 / 2( ) ( )h e ξψ ξ ξ −=  

 
giving a differential equation for h(ξ): 
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ξ ε
ξ ξ

0− + − =
 

 
 

We try solving this with a power series in ξ :  
2

0 1 2( ) ...h h h hξ ξ ξ= + + =   .   Inserting this 
in the differential equation, and requiring that the coefficient of each power ξ n vanish 
identically, leads to a recurrence formula for the coefficients hn: 
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ε
+

+ −
=
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Evidently, the series of odd powers and that of even powers are independent solutions to 

Schrödinger’s equation.  For large n >>ε, the recurrence relation simplifies to 2
2

n nh h
n+ ≈

.  

The series therefore tends to 

2
2 22

(2 2)(2 4)...2 !
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e
n n n
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− −∑ ∑
.  Multiply this by the 

 factor to recover the full wavefunction, we find it diverges as e .   
2 / 2e ξ− 2 / 2ξ+

 
Actually we should have expected this—for a general value of the energy, the 

Schrödinger equation has the solution  at large distances, and only at 
certain energies does the coefficient A vanish to give a normalizable bound state 
wavefunction. 

2 / 2 / 2Ae Beξ+ −≈ +
2ξ

 
So how do we find the nondiverging solutions?  It is clear that the infinite power series 
must be stopped!  The key is in the recurrence relation: if the energy satisfies 2ε = 2n + 1, 
with n an integer, hn+2 and all higher coefficients vanish. The remaining nth order 
polynomial is called a Hermite polynomial and written Hn(ξ).  
 
The standard normalization of the Hermite polynomials Hn(ξ) is to take the coefficient of 
the highest power ξ n to be 2n .  The other coefficients are easy to find using the 
recurrence relation above, giving: 
 

2 3
0 1 2 3( ) 1,   ( ) 2 ,   ( ) 4 2,   ( ) 8 12 ,   etc.H H H Hξ ξ ξ ξ ξ ξ ξ ξ= = = − = −  
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So the bottom line is that the wavefunction for the nth excited state, having energy 
1
2nε = + , is , where C

2 / 2( ) ( )n n nC H e ξψ ξ ξ −=
n is a normalization constant to be 

determined in the next section.  
 

Operator Approach to the Simple Harmonic Oscillator 
Having scaled the position coordinate x to the dimensionless ξ by ξ = x/b, let us also 
scale the momentum from p to π = −i d/dξ  (so /bpπ = ).  The Hamiltonian is 
 

( )2 2 .
2

H ω π ξ= +
 

Dirac had the brilliant idea of factorizing this expression: the obvious thought 

( ) ( )(2 2 i i )ξ π ξ π ξ+ = + − π  isn’t quite right, because it fails to take account of the 
noncommutativity of the operators, but the symmetrical version 
 

( )( ) ( )(
4

H i i i )iω ξ π ξ π ξ π ξ π= + − + − +    
 
is fine, and we shall soon see that it leads to a very easy way of finding the eigenvalues 
and operator matrix elements for the oscillator, far simpler than using the wave functions 
we found above.  Interestingly, Dirac’s factorization here of a second-order differential 
operator into a product of first-order operators is close to the idea that led to his most 
famous achievement, the Dirac equation, the basis of the relativistic theory of electrons, 
protons, etc.  
 

To continue, we define new operators  by 
†,a a

 
†, .

2 2
i ia aξ π ξ π+ −

= =
 

 

From the commutation relation [ ],iπ ξ 1=  it follows that 
 

†[ , ] 1.a a =  
Therefore the Hamiltonian can be written: 
 

† †1 1 ,  where .
2 2 2 2

H a a N N aω ω   = + = + =   
   

a

.≥

 
 
Note that the operator N can only have non-negative eigenvalues, since  
 

†| | | | | 0a aN a aψ ψ ψ ψ ψ ψ< > = < > = < >  
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Now 
 

† † † † † † † †, ,N a a aa a a a a a a a   = − = =     
 
Suppose N has an eigenfunction |ν> with eigenvalue ν,  
 

| |N .ν ν ν> = >  
 
From the two equations above 
 

( )† † † †| | | 1Na a N a a |ν ν ν ν> = > + > = + >ν  
 

so 
† |a ν >  is an eigenfunction of N with eigenvalue ν + 1.  Operating with  again and 

again, we climb an infinite ladder of eigenstates equally spaced in energy. 

†a

 
†a  is often termed a creation operator, since the quantum of energy ω  added each time 

it operates is equivalent to an added photon in black body radiation (electromagnetic 
oscillations in a cavity). 
 
It is easy to check that the state |a ν >

 which 

 is an eigenstate with eigenvalue ν − 1, provided it 
is nonzero, so the operator a takes us down the ladder. However, this cannot go on 
indefinitely—we have established that N cannot have negative eigenvalues. We must 
eventually reach a state | for | 0,aν ν> > =  a annihilates the state. (At each step 
down, a annihilates one quantum of energy—so a is often called an annihilation or 
destruction operator.) 
 

Since the norm squared of a |ν > ,  
2 †| | | | | | | | ,a a a Nν ν ν ν ν ν ν ν> =< > =< > = < >  and 

|ν ν<

| for
 0  for any nonvanishing state, it must be that the lowest eigenstate, the 

 which | 0,aν ν> > =  has ν = 0.  It follows that the  ν’s on the ladder are the positive 
integers, so from this point we relabel the eigenstates with n in place of ν. 

> >

 
It is important to appreciate that we have, using Dirac’s factorization trick and with very 
little effort, found all the eigenvalues of the Hamiltonian 
 

( )2 2 .
2

H ω π ξ= +
 

Contrast the work needed in this section with that in the standard Schrödinger approach. 
We have also established that the lowest energy state |0> must satisfy the first-order 
differential equation , that is, | 0 0a > =
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+ > = + = 
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1 ,

,

 
 
 
The solution, unnormalized, is  

2 / 2
0 ( ) .Ce ξψ ξ −=  

 
(In fact, we’ve seen this equation and its solution before:  this was the condition for the 
“least uncertain” wave function in the discussion of the Generalized Uncertainty 
Principle.) 
 
We denote the normalized set of eigenstates | 0  

Now and C

, |1 , | 2 , |  with  | 1.n n n> > > > < > =… …
† | |na n C n> = + >

n is easily found: 
 

2 2 †| | | | 1| 1 | | ( 1)n nC C n n n aa n n= < + + > = < > = +  
and 

 
† | 1 1 .|a n n n> = + + >

 
Therefore, if we take the set of orthonormal states | 0 as the basis in 

the Hilbert space, the only nonzero matrix elements of  are 

, |1 , | 2 , | n> > > >…
†a

…
†1| |n a 1.n n< + > = +  

That is to say, 

†

0 0 0 0

1 0 0 0
.0 2 0 0

0 0 3 0

a

 
 
 
 =  
 
  
 

…

…

…

…

 
 
(The column vectors in the space this matrix operates on have an infinite number of 
elements: the lowest energy, the ground state component, is the entry at the top of the 
infinite vector—so up the energy ladder is down the vector!) 
 
The adjoint 

0 1 0 0

0 0 2 0
.0 0 0 3

0 0 0 0

a

 
 
 
 =  
 
  
 

…

…

…
…

 
So 
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 | | 1 .a n n n> = − >
 
For practical computations, we need to find the matrix elements of the position and 
momentum variables between the normalized eigenstates.  Now  
 

† †/ 2 ( ), / 2 ( )x m a a p i m a aω ω= + = −  
 
so 

0 1 0 0 0 1 0 0

1 0 2 0 1 0 2 0
/ 2 , / 2 .0 2 0 3 0 2 0 3

0 0 3 0 0 0 3 0

x m p i mω ω

   −
  

−  
  = = −  
  
  
  
  

… …

… …

… …

… …









  

 
 
 
These matrices are, of course, Hermitian (not forgetting the i factor in p).   
 
To find the matrix elements between eigenstates of any product of x’s and p’s, express all 
the x’s and p’s in terms of a’s and ’s, to give a sum of products of a’s and a ’s. Each 
product in this sum can be evaluated sequentially from the right, because each a or  
has only one nonzero matrix element when the product operates on one eigenstate.  

†a †

†a

 

Normalizing the Eigenstates in x-space 
The normalized ground state wave function is 

1
4

2 2/ 2 / 2
0 ( ) ,m xmCe eξ ωωψ ξ

π
− − = =  

   
 
where we have gone back to the original x variable and normalized with the standard 
Gaussian result. 
 
To find the normalized wave functions for the higher states, we first construct them using 
the creation operator  acting on the ground state |0>, then write  as a differential 
operator, acting on the ground state wave function given above. 

†a †a

 

Using 
†| | 1n a n n< − > = ,   

( )††

| | 1 |
!

n
aan n

n n
> = − > = = >… 0 .
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Inserting ( )( ) ( )( )† 1/ 2 1/ 2 / ,a i d dξ π ξ= − = − ξ  
 

1
4

2 / 21 1( ) .
! 2

n

n
d m e

dn
ξωψ ξ ξ

ξ π
−    = −    

     
 
We must now establish that this expression is the same as the Hermite polynomial wave 
function derived earlier, and to do that we need some further properties of the Hermite 
polynomials.  

Hermite Polynomials 
The Hermite polynomials are defined by 
 

2 2

( ) ( )
n

n
n n

dH e
d

eξ ξξ
ξ

−= −
 

so 
2 3

0 1 2 3( ) 1,   ( ) 2 ,   ( ) 4 2,   ( ) 8 12 ,   etc.H H H Hξ ξ ξ ξ ξ ξ ξ ξ= = = − = −  
 

It follows immediately from the definition that the coefficient of the leading power is 2n.  
 
It is a straightforward exercise to check that Hn is a solution of the differential equation 
 

2

2 2 2 ( )n
d d n H

d d
ξ ξ

ξ ξ
 

0,− + = 
   

 
so these are indeed the same polynomials we found by the series solution of 
Schrödinger’s equation earlier. 
 
We can transform ψn(ξ) (from the end of the previous section) into this form by using the 
operator identity: 
 

2 2/ 2 / 2d de e
d d

ξ ξξ
ξ ξ

− 
− = − 

   
so 
 

2 2/ 2 / 2( )
n n

n
n

d de e
d d

ξ ξξ
ξ ξ

− 
− = − 

   
and 
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n

n nn
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m de e e
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m H e
n
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ξ

ωψ ξ
π ξ

ω ξ
π

− −

−

  =   
   

 =  
 

2

 
 
This established the equivalence of the two approaches to Schrödinger’s equation for the 
simple harmonic oscillator, and provides us with the overall normalization constants 
without doing cumbersome integrals. 
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