
Orbital Angular Momentum in Three Dimensions 
Michael Fowler  11/05/07 

The Angular Momentum Operators in Spherical Polar Coordinates 
The angular momentum operator L r p i r= × = − ×∇ . 

 
In spherical polar coordinates, 
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the gradient operator is  
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r r r
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θ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

where now the little hats denote unit vectors: is radially outwards, r̂ θ̂  points along a line of 
longitude away from the north pole (and therefore in the direction of increasing θ  ) and φ̂  points 
along a line of latitude in an anticlockwise direction as seen looking down on the north pole (that 
is, in the direction of increasing φ ). 

 

r̂ : perpendicular to surface 

ϕ̂ : along line of latitude 

θ̂ : along line of longitude 

Top View: 

Pole (z-axis) 

θ̂ : along line of longitude 

ϕ̂ : along line of latitude 

The three unit vectors in the spherical polar system 
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Here ˆ ˆˆ, ,r θ φ  form an orthonormal local basis, and  
 

ˆ ˆ ˆˆ ˆ,r r ˆθ φ φ θ× = × = − , 
as should be clear from the diagram. 
 
So 

1ˆ ˆ
sin

r φ θ
θ θ φ
∂ ∂

×∇ = −
∂ ∂

. 

 
(Explicitly,  and ( )ˆ sin , cos , 0φ φ φ= − ( )ˆ cos cos , cos sin , sinθ θ φ θ φ θ= − .) 
 
The vector φ̂  has zero component in the z-direction, the vector θ̂  has component  sinθ−  in the 
z-direction, so we can immediately conclude that  
 

( ) ( )z z z
L r p i r i

φ
∂

= × = − ×∇ = −
∂

 

 
just as in the two-dimensional case.   
 
The operator  

2 2 1 1ˆ ˆ ˆ ˆ .
sin sin

L φ θ φ θ
θ θ φ θ θ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − − ⋅ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

 
To evaluate this expression, we use 2 2ˆ ˆ ˆ ˆ1, 1, 0φ θ φ θ= = ⋅ =  but we must also check the effects 
of the differential operators in the first expression on the variables in the second, including the 
unit vectors.   
 
From the explicit coordinate expressions for the unit vectors, or by staring at the diagram, you 
should be able to establish the following: ˆ / 0, /ˆφ θ θ θ∂ ∂ = ∂ ∂  is in the r-direction, ˆ /φ φ∂ ∂  is a 
horizontal unit vector pointing inwards perpendicular to φ̂ , and having component cosθ−  in the 
θ̂ -direction, ˆ ˆ/ cosθ φ φ θ∂ ∂ = .   
 
Therefore, the only “differentiation of a unit vector” term that contributes to L2  is 

2 2
ˆ1ˆ cot

sin
φθ θ

θ φ θ θ
∂ ∂ ∂
⋅ = −
∂ ∂ ∂

.   The ∂φ̂
θ∂

 acting on the sinθ  in 1ˆ
sin

θ
θ φ

∂
−

∂
 contributes 

nothing because .   ˆ ˆ 0φ θ⋅ =
 
Hence  
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2 2

2 2

2
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1cot
sin

1 1sin
sin sin

L θ
θ θ θ φ

θ

2

θ θ θ θ φ

⎛ ⎞∂ ∂ ∂
= − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

 

 
Now, we know that L2 and Lz have a common set of eigenkets (since they commute) and we’ve 
already established that those of Lz are ( ) / 2im

m e φφ πΦ = , with m an integer, so the eigenkets 

of L2 must have this same φ dependence, so they must be of  the form ( ) ( )m
l θ φΘ Φ , where 

( )m
l θΘ is a (suitably normalized) solution of the equation 

  
( ) ( ) ( ) ( )

2

2

1 sin 1
sin sin

m
l m m

l l

dd m l l
d d

θ
θ θ θ

θ θ θ θ
Θ

− Θ = − + Θ  

 
more conveniently written 
 

( ) ( )( ) ( )2 2sin sin 1 sin 0.
m
l m

l

dd l l m
d d

θ
θ θ θ θ

θ θ
Θ

+ + − Θ =  

 
To summarize: the solutions to this differential equation, with integer , , ,l m m l≤ will (together 

with ( )m φΦ ) give the complete set of eigenstates of L2, Lz  in the coordinate representation. 

Finding the m = l  Eigenket of L2, Lz 
Recall now that for the simple harmonic oscillator, the easiest wave function to find was that of 
the ground state, the solution of the simple linear equation 0ˆ 0aψ =  (as well as being a solution 
of the quadratic Schrödinger equation, of course).  The other state wave functions could then be 
found by applying the creation operator in differential form the necessary number of times.   
 
A similar strategy works here: we can easily find the highest state on the l ladder, m = l, the state 

,l l , since it satisfies the linear equation , 0,  where x yL l l L L iL+ += = + .  We just need to cast 

this equation in coordinate form.  In Cartesian coordinates, ( )ˆL i r+ +
= − ×∇ , and we’ve already 

shown that 1ˆ ˆ
sin

r φ θ
θ θ φ
∂ ∂

×∇ = −
∂ ∂

.     

 
Therefore  

( ) 1ˆ ˆ
sin

r φ θ
θ θ φ+ ++

∂ ∂
×∇ = −

∂ ∂
, 
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and using ,   ( )ˆ sin , cos , 0φ φ φ= − ( )ˆ cos cos , cos sin , sinθ θ φ θ φ θ= −  we see that φ̂+ , the 

component of φ̂  in the + direction, is ˆ ˆ ˆ i
x yi ie φφ φ φ+ = + = , and similarly ˆ cos ie φθ θ+ = .  

 
So  

cot

cot .

i

i

L e i

L e i

φ

φ

θ
θ φ

θ
θ φ

+

−
−

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂⎝ ⎠

 

and ,L l l+ = 0  becomes  

( )cot 0l il
li e φθ θ

θ φ
⎛ ⎞∂ ∂

+ Θ =⎜ ⎟∂ ∂⎝ ⎠
. 

That is, 

( )cot 0.l
l

d l
d

θ θ
θ

⎛ ⎞− Θ =⎜ ⎟
⎝ ⎠

 

 
The solution to this equation is 

( ) ( )sin ll
l Nθ θΘ =  

 
where N is the normalization constant. The m l≠ wave functions are generated by applying the 
lowering operator L- . 

Normalizing the m = l  Eigenket 
The standard notation for the normalized eigenkets ,l m  is ( ) ( ) (,m m

l lY )mθ φ θ= Θ Φ φ

.m m

. These 
functions, being eigenkets of Hermitian operators with different eigenvalues, must satisfy 
 

( ) ( ) ( ) ( )
2

* *

0 0

, , sin , ,m m m m
l l l l l lY Y d d Y Y d

π π

θ φ

θ φ θ φ θ θ φ θ φ θ φ δ δ′ ′
′ ′

= =

= Ω∫ ∫ ∫ ′ ′=  

So, our first job is to normalize ( ) ( )sin ll
l Nθ θΘ =  (taking ( ) / 2il

l e φφ πΦ = already 
normalized) 
 

( )2 2 1

0

sin 1lN d
π

θ θ+ =∫  

The integral can be evaluated using the substitution cosμ θ=  to give ( )
1

2

1

1
l
dμ μ

−

−∫ , then 

making the further substitution ( )1
2 1u μ= −  to give , which can be integrated 

by parts to give 

( )
1

2 1

0

2 1 ll lu u d+ −∫ u
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( ) ( )2 22 12 ! / 2 1 !lN l l+ 1+ = . 
 
Therefore  

( ) ( ) ( ) ( ) ( )
1/ 2

2 1 ! 1, 1 sin sin
4 2 !

l ll i
l ll

l
Y e

l
ll ilc eφ φθ φ θ θ

π
+⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

 
where we have fixed the sign in accord with the standard convention, and we will denote the 
rather cumbersome normalization constant by cl.  
 
Notice that for large values of l, this function is heavily weighted around the equator, as we 
would expect—for a given total angular momentum one gets a maximum component in the z-
direction when the motion is concentrated in the x, y plane.  This looks like a Bohr orbit.  

Finding the Rest of the Eigenkets: the Details 
Now that ,l l  is normalized, we can automatically produce correctly normalized ,l m ’s, since 
we know the matrix element of the lowering operator between normalized states.  We don’t have 
to do any more integrals. 
 
For example, , 2 ,L l l l l l− = 1− , equivalently (the ’s of course cancel) 
 

( ) ( )1 1
, cot

2
l i

l lY e i
l

φθ φ θ
θ φ

− −− ⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

.lY  

 
That is,   
 
 

( )

( )

1

1 1

, cot si

2 sin cos

l i l
l l

i l l
l

Y c e i

c e l

n ileφ φ

φ

θ φ θ θ
θ φ

θ θ

− −

− −

⎛ ⎞∂ ∂
= − ⋅⎜ ⎟∂ ∂⎝ ⎠

= −

 

 
(both terms giving equal contributions).  
 
Note that this function is actually zero on the equator, but for large l it peaks close to the equator 
(on both sides).  
 
In principle, we can reapply this differential operator over and over to generate all the ,l m  
states, but this gets very messy.  However, there is a neat theorem concerning the lowering 
operator that makes it all straightforward: 
 

( ) ( )

( ) ( )1 1sin sin
cos

i mim m mdL e f e f
d

φφ θ θ θ
θ

− −
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
θ  
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Exercise:  prove this. 
 
 
So  

( )

( ) ( )1 1sin sin sin sin
cos

i lil l l l ldL e e
d

φφ θ θ θ
θ

− −
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
θ  

 
and applying the operator again, 
 

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

( ) ( )

2 1 1

2 2 1 1

2
2 2

2

sin sin sin sin
cos

sin sin sin sin sin
cos cos

sin sin sin .
cos

i lil l l l l

i l l l l l

i l l l l

dL e L e
d

d de
d d

de
d

φφ

φ

φ

θ θ θ θ
θ

lθ θ θ θ
θ θ

θ θ θ
θ

− −
− −

− − − −

− −

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛

= ⋅⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

θ
⎞
⎟⎟
⎠

 

 
So the point of introducing this odd-looking representation of the lowering operator is that the 

1sin l θ−  term in the middle is exactly canceled when the operator is applies twice, and similar 
cancellations occur on repeating the operation, giving the (relatively) simple representation: 
 

( ) ( )
( ) ( ) ( )

2!
, sin sin

2 ! ! cos

l m
m im m

l l l m

l m dY c e
l l m d

φ lθ φ θ
θ

−
−

−

+
=

−
θ  

 
(Where did all those factorials come from?   They’re the product of all the inverse square root 

factors in 
( )( )

1, 1 ,
1

l m L l m
l m l m

−− =
+ − +

 for the number of lowerings necessary.) 

 
Note that for m = 0 the function is 
 

( ) ( ) ( )
0 21, s

2 ! cos

l
l

l l l
dY c

l d
in ,θ φ θ

θ
=  

 
and in fact not a function of φ  at all. This isn’t surprising, since it has zero angular momentum 
about the z-direction, the appropriate ( )φΦ is just constant. 
 
For the differentiation becomes trivial, because, writing ,m l= − cosθ μ= , the differentiation 

becomes (
2

2
2 1
l l

l

d
d )μ
μ

− and only the 2lμ  term survives, giving 
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( ) ( ), 1 sinll i

l lY c e φl lθ φ θ− −= − . 
 
Of course, this could also have been found from the linear equation ,L l l− 0− = , and we could 
have equally generated all the states by applying L+  to this state.  In fact, this gives a different—
but of course equivalent—expression for the ( ),m

lY θ φ : 
 

( ) ( ) ( )
( ) ( ) ( )

2!
, 1 sin sin

2 ! ! cos

l m
mm im m

l l l m

l m dY c e
l l m d

φ lθ φ θ
θ

+

+

−
= −

+
θ  

 
(from Messiah, page 522). 

Relating the Yl 
m’s to the Legendre Functions 

The Legendre polynomials ( )cosnP θ are defined by: 
 

( )
( )

( ) ( )

2

2

1cos sin ,   or
2 ! cos

1 1
2 !

n
n

n nn

n n

n n n

dP
n d

dP
n d

θ θ
θ

μ μ
μ

=

= −

. 

where cosμ θ= , so sind dμ θ θ= − .  From this form, it is easy to show that  (all n 

differentiations must take out a (
( )1 1nP =

)21 μ−  factor to give a nonzero contribution), and ( )nP μ must 

have n zeros in the interval (-1, 1).  ( )nP μ  alternates between an even function and an odd 
function. 
 
The normalization of the ( )nP μ ’s is 
 

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

21 1
2 2 2

1 1
2 1 2

2 2
2

1
2 1

2

1

1 1 1
2 !

11 1 1
2 !

12 ! 1
2 !

2
2 1

n nn n

n n n n

nn nn
n n

n

n

d dP d
n d d

d d
n d

n d
n

n

dμ μ μ μ
μ μ

μ μ μ
μ

μ μ

− −

−

−

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=
+

∫ ∫

∫

∫

μ−
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where in that last line we used the result for the integral obtained earlier in this lecture for 
normalizing    .l

lY
 
Doing the same repeated integration by parts for two different Legendre polynomials proves they 
are orthogonal,  

( ) ( )
1

1

0,m nP P d mμ μ μ
−

n= ≠∫ . 

 
The associated Legendre functions are defined (for n and m zero or positive integers, ) by: n m≥
 

( ) ( ) ( )

( ) ( ) ( )

/ 22

/ 22
2

1

1
1 1

2 !

mmm
n nm

m
n m nn

n n m

dP P
d

d
n d

μ μ μ
μ

μ
μ

μ

+

+

= −

−
= − − .

 

 
Following Messiah in requiring ( )0 0,0lY be real and positive, we find 
 

( ) ( )0 2 1, c
4l l
lY P osθ φ θ
π
+

=  

 
where the coefficient just reflects the differing normalization conventions.  Similarly, the 
spherical harmonics with nonzero m are proportional to the associated Legendre functions (the 
odd ones are not polynomials in cosθ , despite Shankar p. 337, since they include odd powers of 
sinθ ), 
 

( ) ( )( )
( ) ( ) ( )2 1 !

, 1
4 !

mm i
l l

l l m
Y e

l m
φ cos .m mPθ φ θ

π
+ −

= −
+

   

 

The Spherical Harmonics as a Basis 
We have found explicit expressions for the spherical harmonics: an orthonormal set of 
eigenfunctions of L2 and Lz defined on the surface of a sphere, 
 

( ) ( ) ( ) ( )
2

* *

0 0

, , sin , ,m m m m
l l l l l lY Y d d Y Y d

π π

θ φ

.m mθ φ θ φ θ θ φ θ φ θ φ δ δ′ ′
′ ′

= =

= Ω∫ ∫ ∫ ′ ′=  

 
They form a complete set: 

0

, ,
l

l m l

l m l m I
∞

= =−

=∑ ∑  

or 
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( ) ( ) ( ) ( ) (*

0

, , cos cos
l

m m
l l

l m l

Y Yθ φ θ φ δ θ θ δ φ φ δ
∞

= =−
)′ ′ ′ ′ ′= − − = Ω∑∑ −Ω  

 
in the notation of Messiah, where Ω refers to a point on the spherical surface.    
 
(Formal proof of the completeness is given in Byron and Fuller, Mathematics of Classical and 
Quantum Physics.) 
 
The above equation could also be written 
 

( ) (
0

, , , , , , cos cos
l

l m l

l m l m )θ φ θ φ θ φ θ φ δ θ θ δ φ
∞

= =−

φ′ ′ ′ ′ ′ ′= = − −∑ ∑  

 
where the ket ,θ φ′ ′  is to be understood as a localized ket, the spherical-surface version of x , 

normalized by its δ-function inner product with the bra ,θ φ , exactly analogous to 

( )x x xδ′ = − x′ , bearing in mind that the infinitesimal area element is ( )cosd dθ φ− , (a 
positive quantity in the relevant interval, 0 toπ ). 
 
This completeness means that any reasonable function on the surface of the sphere can be 
expressed as a sum over spherical harmonics with appropriate coefficients, in other words the 
spherical generalization of a Fourier series.   
 
In fact, L2 is equivalent to  on the spherical surface, so the are the eigenfunctions of the 
operator .   Just as in one dimension the eigenfunctions of  have the spatial 
dependence of the eigenmodes of a vibrating string, the spherical harmonics have the spatial 
dependence of the eigenmodes of a vibrating spherical balloon.  Of course, to describe the 
displacement of the balloon skin (which must be real!) with these eigenfunctions, we can no 
longer use the eigenfunctions of the z-component of angular momentum, since they are complex 
except in the trivial zero case.  We must rearrange the eigenfunctions of L2, for example 

replacing the pair 

2∇ m
lY

2∇ 2 /d dx2

i,ie eφ φ−  with cos , sinφ φ .  These real solutions, essentially ( )1 , ,
2

l l l l± − , 

have l nodal lines (zeroes) of longitude.  Moving down one notch in m , the (real) state with 

1m l= −  has  longitudinal nodes, but has added a latitudinal node: the equator.  Then 1l −

2m l= −  has  longitudinal nodes, 2 latitudinal nodal lines—there are always l nodal lines 
total. 

2l −

 
Some of these modes of vibration have been observed in the sun after a sunspot storm. The 
spherical harmonics are also used in analyzing the cosmic background radiation.  
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Some Low Order Spherical Harmonics 
Let’s look in more detail at the lowest order spherical harmonics.  For the first few, the 
normalization of the highest state ,l l  is pretty easy to do from scratch:  factoring out theφ  

dependence as before, ( ) ( ) ( ),m m
l lY mθ φ θ= Θ Φ φ , and taking the normalized ( ) / 2im

m e φφ πΦ = , 

theθ  normalization for ,l l  is just ( )2 2 1

0

sin 1lN
π

θ θ+ d =∫ , easily accomplished for    0,1, 2.l =

All we then need is cotiL e iφ θ
θ φ

±
±

⎛ ⎞∂ ∂
= ± ±⎜ ⎟∂ ∂⎝ ⎠

,  ( ) ( ), 1 1 ,L l m l l m m l m− 1= + − − − , and 

finally the sign convention that  ( )0 0,0lY be real and positive. 
 
With a few elementary steps, it can be established that: 
 

0
0

1
1

0
1

1
1

1
4

3 sin
8
3 cos

4
3 sin

8

i

i

Y

Y e

Y

Y e

φ

φ

π

θ
π

θ
π

θ
π

− −

=

= −

=

=

 

 
 

( )2 2 2 1 0 2
2 2 2

2 2 2 1
2 2

15 15 5sin , sin cos , 3cos 1
32 8 16

15 15sin , sin cos
32 8

i i

i i

Y e Y e Y

Y e Y e

φ φ

φ φ

θ θ θ
π π π

θ θ θ
π π

− − − −

= = − =

= =

θ −
 

 
It is often useful to write the  in terms of Cartesian coordinates,  m

lY
 

( ) ( ), , sin cos , sin sin , cosx y z r r rθ φ θ φ= θ  
 
so 

( ) ( ) ( )1 0 1
1 1 1

3 3, , , , , , , ,
8 4

3
8

x iy z x iyY x y z Y x y z Y x y z
r rπ π

−+ −
= − ⋅ = ⋅ = ⋅

rπ
 

 
and 
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( ) ( ) ( )2 2
2 1 0

2 2 22 2

3 115 15 5, ,
32 8 16

zx iy x iy z
Y Y Y

r r rπ π π

−+ +
= = − = 2 ,   etc.  

 

The Y1
m as a Basis of the l = 1 Subspace 

The Y1
m are the l = 1 eigenstates of L2 and Lz.  But what if we’d chosen to look for the common 

eigenstates of L2 and Lx instead?  What l = 1 state has zero angular momentum component in the 

direction of the x-axis?  Clearly it will be 3
4

x
rπ
⋅ , in other words the previous Y1

0  with z 

replaced by x, because after all, our labeling of axes was arbitrary.   
 
Now,  

( )( )1 1
1 1

3   is just  1/ 2 .
4

x Y Y
rπ

−⋅ − +   

 
In fact, any  l = 1 state, with a specified component in any direction, can be written as 
 

1 0 11,1 1,0 1, 1 1,m mα α α α−+ + − =∑ . 
 
This can be seen as follows: an l = 1 state has to be linear in / , / , /x r y r z r  (any quadratic term 
would give rise to 2ie φ  about an appropriate axis, call that the z-axis, so m = 2 and l must be 2 or 
greater), and any such state can be written as a linear combination of 
 

( ) ( )/ 2 , / 2 , /x iy r x iy r z r+ − . 
 
The bottom line, then, is that the Y1

m do indeed provide a complete basis for the l = 1 space of 
eigenstates of L2.     

Representing the Rotation Operator Within the l = 1 Subspace 
Recall that we originally introduced the angular momentum operator J  by defining it as the 
generator of infinitesimal rotations when acting on any wave function, including multicomponent 
wave functions.  We found, using the commutativity properties of ordinary rotations, that the 
vector components of  had to satisfy J ,x y zJ J i⎡ ⎤ =⎣ ⎦ J , etc., and from that we deduced the 

possible sets of eigenvalues of the commuting pair of operators 2 , zJ J  were  for ( ) 21j j + 2J , 
with j an integer of half an odd integer, and for each such  j the allowed eigenvalues of  were 

 
zJ

, , 1, ,m m j j= − − + +… .j
 
Back to the  l = 1 angular wave functions:  we have established that any such function can be 
written 1 0 11,1 1,0 1, 1 1,m mα α α α−+ + − =∑ , and so is a vector in a three-dimensional space 

spanned by the set 1,m ,   In other words, the wave function is a three-component 1, 0, 1.m = −
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object. The angular momentum operator must therefore be a matrix operator in this three-
dimensional space, such that, by definition, the effect of an infinitesimal rotation on the 
multicomponent wave function is: 
  

( ) ( )
1 1ˆ.

1 0

1 1

,
i J

lR e
δθ

0

α α
δθ ψ θ φ α α

α α

−

=

− −

′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

 

 

The unitary rotation operator acting in the l = 1 subspace, ( )( )
i J

U R e
θ

θ
⋅

−
= , has to be a 3 3×  

matrix. The standard notation for its matrix elements is: 
 

( ) ( )( )1 1, 1,
i J

m mD R m e m
θ

θ
⋅

−

′ ′=  

so the rotated ket is 
  

( )1

,
, or m m m m

m m
D Dα α α′ ′

′

′ ′= = α∑  

 
To evaluate this matrix explicitly, we must expand the exponential and we need the matrix 
elements of  between the states , ,zJ J J+ − 1,m  —which we already know.  
 
Now, the basis of the three-dimensional space is just the common eigenkets of , in this 

case identical to .  We know the matrix elements of 

2 , zJ J
2 , zL L , ,zJ J J+ −  between states ,j m  

from the earlier lecture, so it is simple to find the matrix representations of the components of J 
in this space: 
 
 

( ) ( ) ( )1 1 1

0 1 0 0 1 0 1 0 0
1 0 1 , 1 0 1 , 0 0 0

2 20 1 0 0 1 0 0 0 1
x y z

iJ J J
−⎛ ⎞ ⎛ ⎞ ⎛

⎜ ⎟ ⎜ ⎟ ⎜= = − =⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ −⎝ ⎠ ⎝ ⎠ ⎝

.
⎞
⎟
⎟
⎟
⎠

 

 
 
We have added the superscript (1) because this representation of the infinitesimal rotation 
operators is specific to j = 1 (representations for general values of j are as ( ) ( )2 1 2 1j j+ × +  
matrices, reflecting the dimensionality of the space spanned by the 2j + 1 distinct m values).  
 

Expanding the exponential is not difficult, because by inspection ( )( ) ( )(31 1/z zJ J= )/

)1 /

, so from 

spherical symmetry  for a unit vector in any direction. The result is: ( )( ) ( )(31ˆ ˆ/n J n J⋅ = ⋅
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( ) ( )( ) ( )
2ˆ

1
ˆ ˆ

cos 1 sin .
i n J n J n JD R e I i
θ

θ θ
⋅

− ⎛ ⎞ ⎛ ⎞
θ⋅ ⋅

= = + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
One other point we should note: at the end of the linear algebra lecture, we discussed rotations 
about the z-axis in ordinary (x, y, z) space.  Obviously, if we label a point in the (x, y) plane using 
the complex number x + iy, a rotation by an angle θ  about the z-axis will move the point in such 
a way that the new label is .  The angle in this case has the opposite sign to that given 

by the operator above: the reason is that when we write the eigenstate as  

(ie x iyθ + )
3

8
x iy

rπ
+

− ⋅ , this is a 

function of position in the plane, not a point in the plane, so for the reasons discussed at the 
beginning of the first Angular Momentum lecture, the sign is opposite. 

http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/751LinearAlgebra.htm
http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/AngularMomentum.htm
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