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Linear Algebra for Quantum Mechanics 
Michael Fowler  10/14/08 

Introduction 
We’ve seen that in quantum mechanics, the state of an electron in some potential is given by a 
wave function ( , )x tψ , and physical variables are represented by operators on this wave 
function, such as the momentum in the x-direction / .xp i x= − ∂ ∂  The Schrödinger wave 
equation is a linear equation, which means that if 1ψ  and 2ψ  are solutions, then so is 1 1 2 2c cψ ψ+ , 
where c1, c2 are arbitrary complex numbers.   
 
This linearity of the sets of possible solutions is true generally in quantum mechanics, as is the 
representation of physical variables by operators on the wave functions.  The mathematical 
structure this describes, the linear set of possible states and sets of operators on those states, is in 
fact a linear algebra of operators acting on a vector space.  From now on, this is the language 
we’ll be using most of the time.  To clarify, we’ll give some definitions. 

What is a Vector Space? 
The prototypical vector space is of course the set of real vectors in ordinary three-dimensional 
space, these vectors can be represented by trios of real numbers ( )1 2 3, ,v v v  measuring the 
components in the x, y and z directions respectively. 
 
The basic properties of these vectors are:   
 
•  any vector multiplied by a number is another vector in the space, ( ) ( )1 2 3 1 2 3, , , ,a v v v av av av= ;  
 
•   the sum of two vectors is another vector in the space, that given by just adding the 
corresponding components together: ( )1 1 2 2 3 3, ,v w v w v w+ + + .    
 
These two properties together are referred to as “closure”: adding vectors and multiplying them 
by numbers cannot get you out of the space.   
 
•   A further property is that there is a unique null vector ( )0,0,0  and each vector has an additive 

inverse ( )1 2 3, ,v v v− − −  which added to the original vector gives the null vector. 
 
Mathematicians have generalized the definition of a vector space: a general vector space has the 
properties we’ve listed above for three-dimensional real vectors, but the operations of addition 
and multiplication by a number are generalized to more abstract operations between more 
general entities. The operators are, however, restricted to being commutative and associative. 
 

http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/FourierSeries.pdf
http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/
http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/FunctionSpaces.pdf
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Notice that the list of necessary properties for a general vector space does not include that the 
vectors have a magnitude—that would be an additional requirement, giving what is called a 
normed vector space.  More about that later. 
 
To go from the familiar three-dimensional vector space to the vector spaces relevant to quantum 
mechanics, first the real numbers (components of the vector and possible multiplying factors) are 
to be generalized to complex numbers, and second the three-component vector goes an n 
component vector.  The consequent n-dimensional complex space is sufficient to describe the 
quantum mechanics of angular momentum, an important subject.  But to describe the wave 
function of a particle in a box requires an infinite dimensional space, one dimension for each 
Fourier component, and to describe the wave function for a particle on an infinite line requires 
the set of all normalizable continuous differentiable functions on that line.  Fortunately, all these 
generalizations are to finite or infinite sets of complex numbers, so the mathematicians’ vector 
space requirements of commutativity and associativity are always trivially satisfied.   
 
We use Dirac’s notation for vectors, 1 , 2  and call them “kets”, so, in his language, if 

1 , 2 belong to the space, so does 1 21c c+ 2

)

 for arbitrary complex constants c1, c2.  Since 
our vectors are made up of complex numbers, multiplying any vector by zero gives the null 
vector, and the additive inverse is given by reversing the signs of all the numbers in the vector. 
 
 Clearly, the set of solutions of Schrödinger’s equation for an electron in a potential satisfies the 
requirements for a vector space:  ( ,x tψ is just a complex number at each point in space, so only 
complex numbers are involved in forming 1 1 2 2c cψ ψ+ , and commutativity, associativity, etc., 
follow at once.  

Vector Space Dimensionality 
The vectors 1 , 2 , 3  are linearly independent if  
 

1 2 31 2 3c c c 0+ + =  
implies  
 

1 2 3 0.c c c= = =  
 
A vector space is n-dimensional if the maximum number of linearly independent vectors in the 
space is n.  
 
Such a space is often called V n(C), or V n(R) if only real numbers are used.  
 
Now, vector spaces with finite dimension n are clearly insufficient for describing functions of a 
continuous variable x.  But they are well worth reviewing here: as we’ve mentioned, they are fine 
for describing quantized angular momentum, and they serve as a natural introduction to the 
infinite-dimensional spaces needed to describe spatial wavefunctions.   
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A set of n linearly independent vectors in n-dimensional space is a basis—any vector can be 
written in a unique way as a sum over a basis: 

  

iV v= i∑  
 
You can check the uniqueness by taking the difference between two supposedly distinct sums: it 
will be a linear relation between independent vectors, a contradiction. 
 
Since all vectors in the space can be written as linear sums over the elements of the basis, the 
sum of multiples of any two vectors has the form: 
 

( )i ia V b W av bw i+ = + .∑  

Inner Product Spaces 
The vector spaces of relevance in quantum mechanics also have an operation associating a 
number with a pair of vectors, a generalization of the dot product of two ordinary three-
dimensional vectors,  

 
. .i ia b a b=∑  

 
Following Dirac, we write the inner product of two ket vectors ,V W  as W V .  Dirac refers 

to this   form as a “bracket” made up of a “bra” and a “ket”.  This means that each ket vector 

V  has an associated bra .V   For the case of a real n-dimensional vector, ,V V  are 
identical—but we require for the more general case that 
 

W V V W
∗

=  
 
where * denotes complex conjugate. This implies that for a ket ( )1, , nv v… the bra will be 

.  (Actually, bras are usually written as rows, kets as columns, so that the inner 
product follows the standard rules for matrix multiplication.)  Evidently for the n-dimensional 
complex vector

( 1 , , nv v∗ … )∗

V V  is real and positive except for the null vector: 
 

2

1

.
n

iV V v=∑  

 
 For the more general inner product spaces considered later we require V V  to be positive, 
except for the null vector.  (These requirements do restrict the classes of vector spaces we are 
considering—no Lorentz metric, for example—but they are all satisfied by the spaces relevant to 
nonrelativistic quantum mechanics.) 
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The norm of V  is then defined by 
 

.V V V=  
 

If V  is a member of V n(C), so is a V , for any complex number a.    
 
We require the inner product operation to commute with multiplication by a number, so 
 

( ) .W a V a W V=  
 
The complex conjugate of the right hand side is .a V W∗   For consistency, the bra 

corresponding to the ket  a V  must therefore be V a∗—in any case obvious from the 
definition of the bra in n complex dimensions given above.  
 
It follows that if 
  

,   ,   then .i i iV v i W w i V W v w i∗= = =∑ ∑ ∑ j j  
 

Constructing an Orthonormal Basis: the Gram-Schmidt Process 
To have something better resembling the standard dot product of ordinary three vectors, we need 

,iji j δ=  that is, we need to construct an orthonormal basis in the space.  There is a 
straightforward procedure for doing this called the Gram-Schmidt process. We begin with a 
linearly independent set of basis vectors, 1 , 2 , 3 ,… .   
 
We first normalize 1  by dividing it by its norm.  Call the normalized vector .I   Now 2  

cannot be parallel to ,I  because the original basis was of linearly independent vectors, but 2  

in general has a nonzero component parallel to ,I  equal to 2 ,I I  since I  is normalized.  

Therefore, the vector 2 2I I−  is perpendicular to ,I  as is easily verified.  It is also easy 

to compute the norm of this vector, and divide by it to get ,II  the second member of the 

orthonormal basis.  Next, we take 3  and subtract off its components in the directions I  and 

,II  normalize the remainder, and so on.  
 
In an n-dimensional space, having constructed an orthonormal basis with members ,i  any 

vector V  can be written as a column vector,  
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1

2

1
0

.  , where 1  and so on..

. .
0

i

n

v
v

V v i

v

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑  

 
The corresponding bra is iV v∗=∑ i , which we write as a row vector with the elements 

complex conjugated, ( )1 2, , nV v v v∗ ∗ ∗= … .  This operation, going from columns to rows and 
taking the complex conjugate, is called taking the adjoint, and can also be applied to matrices, as 
we shall see shortly. 
 
The reason for representing the bra as a row is that the inner product of two vectors is then given 
by standard matrix multiplication: 
 

1

1 2

.
( , ,..., ) .

.n

n

w

V W v v v

w

∗ ∗ ∗

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
(Of course, this only works with an orthonormal base.) 
  

The Schwartz Inequality 
The Schwartz inequality is the generalization to any inner product space of the result 

 (or ) for ordinary three-dimensional vectors.  The equality sign in that 
result only holds when the vectors are parallel.  To generalize to higher dimensions, one might 
just note that two vectors are in a two-dimensional subspace, but an illuminating way of 
understanding the inequality is to write the vector 

2 2| . | | | | |a b a b≤ 2 2cos 1θ ≤

a  as a sum of two components, one parallel to 

and one perpendicular to b .  The component parallel to b b  is just ( ) 2
/b a b b⋅ , so the 

component perpendicular to  is the vector b ( ) 2
/a a b a b b⊥ = − ⋅ .  Substituting this expression 

into  , the inequality follows. 0a a⊥ ⊥⋅ ≥
 
This same point can be made in a general inner product space:  if ,V W  are two vectors, then 
 

2 
| |

W W V
Z V

W
= −  
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is the component of V  perpendicular to W , as is easily checked by taking its inner product 

with W . 
 
Then 

2 2 20 gives immediately .Z Z V W V W≥ ≤  

Linear Operators 
A linear operator A takes any vector in a linear vector space to a vector in that space, 

,A V V ′=  and satisfies 
 

( )1 1 2 2 1 1 2 2 ,A c V c V c A V c A V+ = +  
 
with c1, c2 arbitrary complex constants. 
 
The identity operator I is (obviously!) defined by: 
 

for all .I V V V=  
 
For an n-dimensional vector space with an orthonormal basis  1 , , ,n…  since any vector in the 

space can be expressed as a sum iV v= i∑ , the linear operator is completely determined by 
its action on the basis vectors—this is all we need to know. It’s easy to find an expression for the 
identity operator in terms of bras and kets.  
 
Taking the inner product of both sides of the equation iV v= i∑  with the bra i  gives 

,ii V v=  so  
 

.iV v i i i V= =∑ ∑  
 
Since this is true for any vector in the space, it follows that that the identity operator is just 
 

1

.
n

I i i=∑  

 This is an important result: it will reappear in many disguises.  
 
To analyze the action of a general linear operator A, we just need to know how it acts on each 
basis vector. Beginning with 1 ,A  this must be some sum over the basis vectors, and since they 

are orthonormal, the component in the i  direction must be just 1 .i A  
 
That is, 
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1 1
1 1

1 1 ,  writing 1 .
n n

i iA i i A A i i A A= =∑ ∑ =  

 
So if the linear operator A acting on iV v= i∑  gives iV v i′ ′= ∑ , that is, ,A V V ′= the 
linearity tells us that 
 

, ,
i j j

i j i j
v i V A V v A j v i i A j v A i′ ′= = = = =∑ ∑ ∑ j ij∑  

 
where in the fourth step we just inserted the identity operator. 
 

Since the i ’s are all orthogonal, the coefficient of a particular i  on the left-hand side of the 

equation must be identical with the coefficient of the same i  on the right-hand side. That is, 

.i ijv A v′ = j
 

 
Therefore the operator A is simply equivalent to matrix multiplication: 
  

1 1

22

1 1 1 2 . . 1
2 1 2 2 . . .

. . . . ..

. . . . ..
1 2 . . n

n

v

. .

.

A A A n v
A A vv

n A n A n A n vv

⎛ ⎞′ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠′ ⎝ ⎠⎝ ⎠

 

 
 
Evidently, then, applying two linear operators one after the other is equivalent to successive 
matrix multiplication—and, therefore, since matrices do not in general commute, nor do linear 
operators. (Of course, if we hope to represent quantum variables as linear operators on a vector 
space, this has to be true—the momentum operator /p i d dx= − certainly doesn’t commute with 
x!) 

Projection Operators 
It is important to note that a linear operator applied successively to the members of an 
orthonormal basis might give a new set of vectors which no longer span the entire space.  To 
give an example, the linear operator 1 1  applied to any vector in the space picks out the 

vector’s component in the 1  direction.  It’s called a projection operator.  The operator 

( 1 1 2 2+ )  projects a vector into its components in the subspace spanned by the vectors 1  

and 2 , and so on—if we extend the sum to be over the whole basis, we recover the identity 
operator. 
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Exercise:  prove that the  matrix representation of the projection operator n n× ( )1 1 2 2+  
has all elements zero except the first two diagonal elements, which are equal to one. 
 
There can be no inverse operator to a nontrivial projection operator, since the information about 
components of the vector perpendicular to the projected subspace is lost.  

The Adjoint Operator and Hermitian Matrices 
As we’ve discussed, if a ket V  in the n-dimensional space is written as a column vector with n 
(complex) components, the corresponding bra is a row vector having as elements the complex 
conjugates of the ket elements.  W V V W

∗
=  then follows automatically from standard 

matrix multiplication rules, and on multiplying V  by a complex number a to get a V   
(meaning that each element in the column of numbers is multiplied by a) the corresponding bra 
goes to .V a a V∗ ∗=  
 
But suppose that instead of multiplying a ket by a number, we operate on it with a linear 
operator. What generates the parallel transformation among the bras?  In other words, if 

,A V V ′= what operator sends the bra V  to V ′ ?  It must be a linear operator, because A is 

linear, that is, if under A 1 1 2,V V V V′ ′→ → 2  and 3 1 2 ,V V V= +  then under A  

3 3 is required to go to .V V ′ ′ ′= +1 2V V   Consequently, under the parallel bra transformation 

we must have 1 1 2 2 3 3,  and ,V V V V V V′ ′→ → → ′ —the bra transformation is necessarily 
also linear.  Recalling that the bra is an n-element row vector, the most general linear 
transformation sending it to another bra is an n n×  matrix operating on the bra from the right.  
 
This bra operator is called the adjoint of A, written †.A   That is, the ket A V  has corresponding 

bra †.V A  In an orthonormal basis, using the notation Ai  to denote the bra †i A  

corresponding to the ket ,A i Ai=  say, 
 

( )† † .jiij
A i A j Ai j j Ai A∗ ∗= = = =  

 
So the adjoint operator is the transpose complex conjugate.  
 
Important: for a product of two operators (prove this!),  
 

† †( )AB B A= †.  
 
 An operator equal to its adjoint †A A=  is called Hermitian.  As we shall find in the next 
lecture, Hermitian operators are of central importance in quantum mechanics.  An operator equal 
to minus its adjoint, , is anti Hermitian (sometimes termed skew Hermitian).  These two †A A= −
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operator types are essentially generalizations of real and imaginary number: any operator can be 
expressed as a sum of a Hermitian operator and an anti Hermitian operator,  

 
† †1 1

2 2( ) ( ).A A A A A= + + −  
 
The definition of adjoint naturally extends to vectors and numbers: the adjoint of a ket is the 
corresponding bra, the adjoint of a number is its complex conjugate.  This is useful to bear in 
mind when taking the adjoint of an operator which may be partially constructed of vectors and 
numbers, such as projection-type operators.  The adjoint of a product of matrices, vectors and 
numbers is the product of the adjoints in reverse order.  (Of course, for numbers the order 
doesn’t matter.) 

Unitary Operators 
An operator is unitary if   This implies first that U operating on any vector gives a 
vector having the same norm, since the new norm 

† 1.U U =
†V U U V V V= .  Furthermore, inner 

products are preserved, † .W U U V W V=   Therefore, under a unitary transformation the 
original orthonormal basis in the space must go to another orthonormal basis.   
 
Conversely, any transformation that takes one orthonormal basis into another one is a unitary 
transformation.  To see this, suppose that a linear transformation A sends the members of the 
orthonormal basis ( 1 1 1

1 , 2 , , n… ) to the different orthonormal set ( )2 2 2
1 , 2 , , n… , so 

1 2
1 1A = , etc.  Then the vector 

1iV v= i∑  will go to 
2
,iV A V v i′ = =∑ having the 

same norm, 2
iV V V V v′ ′ = = ∑ .  A matrix elememt *i iW V W V w v′ ′ = =∑ , but also 

†W V W A A V′ ′ = . That is, †W V W A A V=  for arbitrary kets ,V W .  This is only 

possible if , so A is unitary. †A A I=
 
A unitary operation amounts to a rotation (possibly combined with a reflection) in the space.  
Evidently, since  the adjoint  rotates the basis back—it is the inverse operation, and 
so  also, that is, U and  commute.  

† 1,U U = †U
† 1UU = †U

Determinants 
We review in this section the determinant of a matrix, a function closely related to the operator 
properties of the matrix. 
 
Let’s start with  matrices: 2 2×

11 12

21 22

.
a a

A
a a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
The determinant of this matrix is defined by: 
 

11 22 12 21det | | .A A a a a a= = −  
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Writing the two rows of the matrix as vectors: 
 

( )
( )

1 11 12

2 21 2

,

,

R

R

a a a

a a a

=

= 2

 

 
(R denotes row), 1det R

2
RA a a= ×  is just the area (with appropriate sign) of the parallelogram 

having the two row vectors as adjacent sides: 

( )11 12,a a
 

( )21 22,a a  

 
This is zero if the two vectors are parallel (linearly dependent) and is not changed by adding any 
multiple of a  to a   (because the new parallelogram has the same base and the same height as 
the original—check this by drawing).  

2
R

1
R

 
Let’s go on to the more interesting case of 3 3× matrices: 
 

11 12 13

21 22 23

31 32 33

.
a a a

A a a a
a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
The determinant of A is defined as 

1 2 3det ijk i j kA a a aε=  
 
where 0ijkε =  if any two are equal, +1 if ijk = 123, 231 or 312 (that is to say, an even 
permutation of 123) and –1 if ijk is an odd permutation of 123.  Repeated suffixes, of course, 
imply summation here. 
 
Writing this out explicitly,  
 

11 22 33 21 32 13 31 12 23 11 32 23 21 12 33 31 22 13det .A a a a a a a a a a a a a a a a a a a= + + − − −  
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Just as in two dimensions, it’s worth looking at this expression in terms of vectors representing 
the rows of the matrix 
 

1 11 12 13

2 21 22 2

3 31 32 3

( , , )

( , , )

( , , )

R

R

R

a a a a

a a a a

a a a a

=

=

=
3

3  
so  

1

2 1

3

,   and we see that det ( ) .

R

R R

R

a

2 3
R RA a A a

a

⎛ ⎞
⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎝ ⎠

a a× ⋅

2

3

R

R

a
a

⎞
⎟
⎟
⎟
⎠

 

 
This is the volume of the parallelopiped formed by the three vectors being adjacent sides 
(meeting at one corner, the origin).   

 
 
This parallelepiped volume will of course be zero if the three vectors lie in a plane, and it is not 
changed if a multiple of one of the vectors is added to another of the vectors.  That is to say, the 
determinant of a matrix is not changed if a multiple of one row is added to another row.  This is 
because the determinant is linear in the elements of a single row,  
 

1 2 1 2

2 2

3 3

det det det

R R R R

R R

R R

a a a a
a a
a a

λ
λ

⎛ ⎞ ⎛ ⎞ ⎛+
⎜ ⎟ ⎜ ⎟ ⎜

= +⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝  

 
and the last term is zero because two rows are identical—so the triple vector product vanishes.  
 
A more general way of stating this, applicable to larger determinants, is that for a determinant 
with two identical rows, the symmetry of the two rows, together with the antisymmetry of ,ijkε  
ensures that the terms in the sum all cancel in pairs. 
 
Since the determinant is not altered by adding some multiple of one row to another, if the rows 
are linearly dependent, one row could be made identically zero by adding the right multiples of 
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the other rows. Since every term in the expression for the determinant has one element from each 
row, the determinant would then be identically zero.  For the three-dimensional case, the linear 
dependence of the rows means the corresponding vectors lie in a plane, and the parallelepiped is 
flat.  
 
The algebraic argument generalizes easily to n n×  determinants: they are identically zero if the 
rows are linearly dependent.   
 
The generalization from  determinants is that 3 3 to n n× × 1 2 3det ijk i j kA a a aε= becomes: 
 

... 1 2 3det ....ijk p i j k npA a a a aε=  
 
where ijk…p is summed over all permutations of 132…n, and the ε  symbol is zero if any two of 
its suffixes are equal, +1 for an even permutation and −1 for an odd permutation. (Note: any 
permutation can be written as a product of swaps of neighbors.  Such a representation is in 
general not unique, but for a given permutation, all such representations will have either an odd 
number of elements or an even number.) 
 
An important theorem is that for a product of two matrices A, B  the determinant of the product is 
the product of the determinants, det det det .AB A B= ×   This can be verified by brute force for 

 matrices, and a proof in the general case can be found in any book on mathematical physics 
(for example, Byron and Fuller).  
2 2×

 
It can also be proved that if the rows are linearly independent, the determinant cannot be zero.   
 
(Here’s a proof: take an  matrix with the n row vectors linearly independent.  Now consider 
the components of those vectors in the  n – 1 dimensional subspace perpendicular to (1, 0, … ,0).  
These n vectors, each with only n – 1 components, must be linearly dependent, since there are 
more of them than the dimension of the space. So we can take some combination of the rows 
below the first row and subtract it from the first row to leave the first row (a, 0, 0, … ,0), and a 
cannot be zero since we have a matrix with n linearly independent rows. We can then subtract 
multiples of this first row from the other rows to get a determinant having zeros in the first 
column below the first row. Now look at the n – 1 by n – 1 determinant to be multiplied by a.   

n n×

Its rows must be linearly independent since those of the original matrix were.  Now proceed by 
induction.) 
 
To return to three dimensions, it is clear from the form of  

  
11 22 33 21 32 13 31 12 23 11 32 23 21 12 33 31 22 13det A a a a a a a a a a a a a a a a a a a= + + − − −  

 
that we could equally have taken the columns of A as three vectors, 1 2 3( , , )C C CA a a a=  in an 
obvious notation, 1 2det ( )C C

3
CA a a a= × ⋅ , and linear dependence among the columns will also 

ensure the vanishing of the determinant—so, in fact, linear dependence of the columns ensures 
linear dependence of the rows.   
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This, too, generalizes to : in the definition of determinant  n n× ... 1 2 3det ....ijk p i j k npA a a a aε= , the 
row suffix is fixed and the column suffix goes over all permissible permutations, with the 
appropriate sign—but the same terms would be generated by having the column suffixes kept in 
numerical order and allowing the row suffix to undergo the permutations. 

An Aside: Reciprocal Lattice Vectors 
It is perhaps worth mentioning how the inverse of a 3 3×  matrix operator can be understoo
terms of vectors.  For a set of linearly independent vectors 

d in 

1 2 3( , , )a a a , a reciprocal set 1 2 3( , , )b b b  
can be defined by  

2 3
1

1 2 3

a ab
a a a

×
=

× ⋅
 

 
and the obvious cyclic definitions for the other two reciprocal vectors. We see immediately that  

  

i j ia b jδ⋅ =  
 
from which it follows that the inverse matrix to  
 

( )
1

2 1 2

3

  is 

R

R C C C

R

a

3A a B b b b
a

⎛ ⎞
⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎝ ⎠ . 

 
(These reciprocal vectors are important in x-ray crystallography, for example.  If a crystalline 
lattice has certain atoms at positions 1 1 2 2 3 3n a n a n a+ + , where n1, n2, n3 are integers, the 
reciprocal vectors are the set of normals to possible planes of the atoms, and these planes of 
atoms are the important elements in the diffractive x-ray scattering.) 

Eigenkets and Eigenvalues 
If an operator A operating on a ket V  gives a multiple of the same ket, 
 

A V Vλ=  
 
then V  is said to be an eigenket (or, just as often, eigenvector, or eigenstate!) of A with 
eigenvalue λ . 
 
Eigenkets and eigenvalues are of central importance in quantum mechanics: dynamical variables 
are operators, a physical measurement of a dynamical variable yields an eigenvalue of the 
operator, and forces the system into an eigenket. 
 
In this section, we shall show how to find the eigenvalues and corresponding eigenkets for an 
operator A.  We’ll use the notation i i iA a a a=  for the set of eigenkets ia  with 
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corresponding eigenvalues ai.  (Obviously, in the eigenvalue equation here the suffix i is not 
summed over.) 
 
The first step in solving A V Vλ=  is to find the allowed eigenvalues ai.   
 
Writing the equation in matrix form:  
 

11 12 1 1

21 22 2

1

. .

. . .
. . . . . . 0
. . . . . .

. . .

n

n nn n

A A A v
A A v

A A v

λ
λ

λ

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ .=
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

 
This equation is actually telling us that the columns of the matrix A Iλ− are linearly dependent!  
To see this, write the matrix as a row vector each element of which is one of its columns, and the 
equation becomes 

1

1 2

.
( , ,..., ) . 0

.

C C C
n

n

v

M M M

v

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

which is to say 

1 1 2 2 ... 0,C C C
n nv M v M v M+ = + =  

 
the columns of the matrix are indeed a linearly dependent set. 
 
We know that means the determinant of the matrix A Iλ−  is zero,  
 

11 12 1

21 22

1

. .

. . .
. . . . . 0.
. . . . .

. . .

n

n n

A A A
A A

A A

λ
λ

λ

−
−

n

=

−

 

 
 

Evaluating the determinant using ... 1 2 3det ....ijk p i j k npA a a a aε=  gives an nth order polynomial inλ  
sometimes called the characteristic polynomial.  Any polynomial can be written in terms of its 
roots: 
 

1 2( )( )....( ) 0nC a a aλ λ λ− − − =  
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where the ai’s, the roots of the polynomial, and C is an overall constant, which from inspection 
of the determinant we can see to be  (It’s the coefficient of ( )1 .n− .nλ )  The polynomial roots 
(which we don’t yet know) are in fact the eigenvalues.  For example, putting 1aλ =  in the 
matrix,  which means that ( )1det 0,A a I− = ( )1 0A a I V− =  has a nontrivial solution ,V  and 

this is our eigenvector 1 .a   
 
Notice that the diagonal term in the determinant ( )( ) ( )11 22 nnA A Aλ λ λ− − … −  generates the 

leading two orders in the polynomial ( ) ( )( )1
111 n n

nnA Aλ −− − + +… nλ , (and some lower order 

terms too).  Equating the coefficient of 1nλ −  here with that in ( ) ,  1 21 ( )( )....( )n
na a aλ λ λ− − − −

1 1

Tr .
n n

i ii
i i

a A
= =

= =∑ ∑ A  

 
Putting 0λ =  in both the determinantal and the polynomial representations (in other words, 
equating theλ -independent terms),  

1

det .
n

i
i

a A
=

=∏  

 
So we can find both the sum and the product of the eigenvalues directly from the determinant, 
and for a  matrix this is enough to solve the problem. 2 2×
   
For anything bigger, the method is to solve the polynomial equation ( )det 0A Iλ− = to find the 
set of eigenvalues, then use them to calculate the corresponding eigenvectors.  This is done one 
at a time.  
 
Labeling the first eigenvalue found as a1, the corresponding equation for the components vi of 
the eigenvector 1a  is 
 

11 1 12 1 1

21 22 1 2

1 1

. .

. . .
. . . . . . 0
. . . . . .

. . .

n

n nn n

A a A A v
A A a v

A A a v

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ .=
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

 
This looks like n equations for the n numbers vi, but it isn’t: remember the rows are linearly 
dependent, so there are only n – 1 independent equations.  However, that’s enough to determine  
the ratios of the vector components  v1, …, vn, then finally the eigenvector is normalized.  The 
process is then repeated for each eignevalue.  (Extra care is needed if the polynomial has 
coincident roots—we’ll discuss that case later.) 
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Eigenvalues and Eigenstates of Hermitian Matrices 
For a Hermitian matrix, it is easy to establish that the eigenvalues are always real.  (Note: A 
basic postulate of Quantum Mechanics, discussed in the next lecture, is that physical observables 
are represented by Hermitian operators.)  Taking (in this section) A to be hermitian, and 
labeling the eigenkets by the eigenvalue, that is,  

† ,A A=

 
1 1 1A a a a=  

 
the inner product with the bra 1a  gives 1 1 1 1 1 .a A a a a a=   But the inner product of the 

adjoint equation (remembering ) †A A=

1 1a A a a∗= 1  
 
with 1a  gives 1 1 1 1 1 ,a A a a a a∗=  so 1a a1

∗= , and all the eigenvalues must be real. 
 

They certainly don’t have to all be different—for example, the unit matrix I is Hermitian, and all 
its eigenvalues are of course 1. But let’s first consider the case where they are all different.  
 
It’s easy to show that the eigenkets belonging to different eigenvalues are orthogonal. 
 
If 
 

1 1 1

2 2 2 ,

A a a a

A a a a

=

=
 

 
take the adjoint of the first equation and then the inner product with 2a , and compare it with 

the inner product of the second equation with 1a : 
  

1 2 1 1 2 2 1|a A a a a a a a a= = 2  
 
so 1 2 0a a =  unless the eigenvalues are equal. (If they are equal, they are referred to as 
degenerate eigenvalues.)    
 
Let’s first consider the nondegenerate case: A has all eigenvalues distinct. The  eigenkets of A, 
appropriately normalized, form an orthonormal basis in the space.  
 
Write 

( )
11 11 12 1

21 21 22 2
1 1 2

1 1 2

,  and consider the matrix  .

n

n
n

n n n nn

v v v v
v v v v

a V a

v v v v

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

a a  
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Now  

( ) ( )1 2 1 1 2 2n n nAV A a a a a a a a a a= =  
 
so 

( )
1 1

2 2†
1 1 2 2

0 0
0 0

.

0 0

n n

n n

a a
a a

V AV a a a a a a

a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
Note also that, obviously, V is unitary: 
 

( )
1

2†
1 2

1 0 0
0 1 0

.

0 0 1

n

n

a
a

V V a a a

a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
We have established, then, that for a Hermitian matrix with distinct eigenvalues (nondegenerate 
case), the unitary matrix V having columns identical to the normalized eigenkets of A 
diagonalizes A, that is, is diagonal.  Furthermore, its (diagonal) elements equal the 
corresponding eigenvalues of A. 

†V AV

 
Another way of saying this is that the unitary matrix V is the transformation from the original 
orthonormal basis in ths space to the basis formed of the normalized eigenkets of A.   

Proof that the Eigenvectors of a Hermitian Matrix Span the Space 
We’ll now move on to the general case: what if some of the eigenvalues of A are the same?  In 
this case, any linear combination of them is also an eigenvector with the same eigenvalue.  
Assuming they form a basis in the subspace, the Gram Schmidt procedure can be used to make it 
orthonormal, and so part of an orthonormal basis of the whole space. 
 
However, we have not actually established that the eigenvectors do form a basis in a degenerate 
subspace.  Could it be that (to take the simplest case) the two eigenvectors for the single 
eigenvalue turn out to be parallel?  This is actually the case for some 2×2 matrices—for example, 

, we need to prove it is not true for Hermitian matrices, and nor are the analogous 

statements for higher-dimensional degenerate subspaces.   

1 1
0 1
⎛ ⎞
⎜
⎝ ⎠

⎟

 
A clear presentation is given in Byron and Fuller, section 4.7.  We follow it here. The procedure 
is by induction from the 2×2 case.  The general 2×2 Hermitian matrix has the form  
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a b
b c∗

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
where a, c are real.  It is easy to check that if the eigenvalues are degenerate, this matrix becomes 
a real multiple of the identity, and so trivially has two orthonormal eigenvectors.  Since we 
already know that if the eigenvalues of a 2×2 Hermitian matrix are distinct it can be diagonalized 
by the unitary transformation formed from its orthonormal eigenvectors, we have established that 
any 2×2 Hermitian matrix can be so diagonalized. 
 
To carry out the induction process, we now assume any (n – 1) ×(n – 1) Hermitian matrix can be 
diagonalized by a unitary transformation.  We need to prove this means it’s also true for an n × n 
Hermitian matrix A.  (Recall a unitary transformation takes one complete orthonormal basis to 
another.  If it diagonalizes a Hermitian matrix, the new basis is necessarily the set of 
orthonormalized eigenvectors.  Hence, if the matrix can be diagonalized, the eigenvectors do 
span the n-dimensional space.)  
 
Choose an eigenvalue a1 of A, with normalized eigenvector (1 11 21 1, , , T

na v v v= … ) .  (We put in T 
for transpose, to save the awkwardness of filling the page with a few column vectors.)  We 
construct a unitary operator V by making this the first column, then filling in with n – 1 other 
normalized vectors to construct, with 1a , an n-dimensional orthonormal basis.  
 
Now, since 1 1 1A a a a= , the first column of the matrix AV will just be 1 1a a , and the rows of 

the matrix  will be †V V −= 1
1a  followed by n – 1 normalized vectors orthogonal to it, so the 

first column of the matrix  will be a†V AV 1 followed by zeros.  It is easy to check that  is 
Hermitian, since A is, so its first row is also zero beyond the first diagonal term.  

†V AV

 
This establishes that for an n × n Hermitian matrix, a unitary transformation exists to put it in the 
form: 
 

1

22 2
†

2

0 . . 0
0 . .
0 . . . .
0 . . . .
0 . .

n

n n

a
M M

V AV

M M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.

n

 

 
But we can now perform a second unitary transformation in the (n – 1) ×(n – 1) subspace 
orthogonal to 1a  (this of course leaves 1a  invariant), to complete the full diagonalization—
that is to say, the existence of the (n – 1) ×(n – 1) diagonalization, plus the argument above, 
guarantees the existence of the n × n diagonalization: the induction is complete.  
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Diagonalizing a Hermitian Matrix 
As discussed above, a Hermitian matrix is diagonal in the orthonormal basis of its set of 
eigenvectors: 1 2, , , na a a… , since 

 
 .i j i j j j i j j ija A a a a a a a a a δ= = =  

 
If we are given the matrix elements of A in some other orthonormal basis,  to diagonalize it we 
need to rotate from the initial orthonormal basis to one made up of the eigenkets of A.  
 
Denoting the initial orthonormal basis in the standard fashion 
 

th

1 0 0
0 1

1 ,     2 ,   (1 in  place down), .0 0 1
. .
0 0 0

i i n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

…

0
0
0
.
1

 

 
the elements of the matrix are ijA i A j= . 
 
A transformation from one orthonormal basis to another is a unitary transformation, as discussed 
above, so we write it  
 

.V V U V′→ =  
 

Under this transformation, the matrix element 
 

† .W A V W A V W U AU V′ ′→ =  
 
So we can find the appropriate transformation matrix U  by requiring that  be diagonal 
with respect to the original set of basis vectors.  (Transforming the operator in this way, leaving 
the vector space alone, is equivalent to rotating the vector space and leaving the operator alone.  
Of course, in a system with more than one operator, the same transformation would have to be 
applied to all the operators). 

†U AU

 
In fact, just as we discussed for the nondegenerate (distinct eigenvalues) case, the unitary matrix 
U we need is just composed of the normalized eigenkets of the operator A,  
  

( )1 2, ,..., nU a a a=  
 
And it follows as before that  
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( )† ,  a diagonal matrix.i j j ij jij
U AU a a a aδ= =  

 
(The repeated suffixes here are of course not summed over.) 
 
If some of the eigenvalues are the same, the Gram Schmidt procedure may be needed to generate 
an orthogonal set, as mentioned earlier.  

Functions of Matrices 
The same unitary operator U  that diagonalizes an Hermitian matrix A will also diagonalize A2, 
because 
  

1 2 1 1 1U A U U AAU U AUU AU− − − −= =  
 
so 

2
1

2
2

† 2 2
3

2

0 0 . 0
0 0 .

.0 0 . 0
. . . . .
0 . . . n

a
a

U A U a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0
 

 
Evidently, this same process works for any power of A, and formally for any function of A 
expressible as a power series, but of course convergence properties need to be considered, and 
this becomes trickier on going from finite matrices to operators on infinite spaces.   

Commuting Hermitian Matrices 
From the above, the set of powers of an Hermitian matrix all commute with each other, and have 
a common set of eigenvectors (but not the same eigenvalues, obviously).  In fact it is not difficult 
to show that any two Hermitian matrices that commute with each other have the same set of 
eigenvectors (after possible Gram Schmidt rearrangements in degenerate subspaces).  
 
If two  Hermitian matrices A, B commute, that is, AB = BA, and A has a nondegenerate set 
of eigenvectors 

n n×
,i i iA a a a=  then ,i i i i i iAB a BA a Ba a a B a= = =  that is, iB a  is an 

eigenvector of A with eigenvalue ai.  Since A is nondegenerate, iB a  must be some multiple of 

ia , and we conclude that A, B have the same set of eigenvectors.  
 
Now suppose A is degenerate, and consider the m m× subspace  spanned by the eigenvectors 

iaS

,1 , ,2 ,i ia a … of A having eigenvalue .  Applying the argument in the paragraph above, ia

,1 , , 2 ,i iB a B a …  must also lie in this subspace. Therefore, if we transform B with the same 
unitary transformation that diagonalized A, B will not in general be diagonal in the subspace , 

iaS
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but it will be what is termed block diagonal, in that if B operates on any vector in  it gives a 
vector in .  

iaS

iaS
 
B can be written as two diagonal blocks: one m m× , one ( ) ( ) ,n m n m− × − with zeroes outside 
these diagonal blocks, for example, for m = 2, n = 5: 
 

11 12

21 22

33 34 35

43 44 45

53 54 55

0 0 0
0 0 0

.0 0
0 0
0 0

b b
b b

b b b
b b b
b b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
And, in fact, if there is only one degenerate eigenvalue that second block will only have nonzero 
terms on the diagonal: 
 

11 12

21 22

3

4

5

0 0 0
0 0 0

.0 0 0 0
0 0 0 0
0 0 0 0

b b
b b

b
b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
B therefore operates on two subspaces, one m-dimensional, one (n−m)-dimensional, 
independently—a vector entirely in one subspace stays there. 

 
 This means we can complete the diagonalization of B with a unitary operator that only operates 
on the  block 

i
.  Such an operator will also affect the eigenvectors of A, but that doesn’t 

matter, because all vectors in this subspace are eigenvectors of A with the same eigenvalue, so as 
far as A is concerned, we can choose any orthonormal basis we like—the basis vectors will still 
be eigenvectors.  

m m× aS

 
This establishes that any two commuting Hermitian matrices can be diagonalized at the same 
time. Obviously, this can never be true of noncommuting matrices, since all diagonal matrices 
commute.  

Diagonalizing a Unitary Matrix 
Any unitary matrix can be diagonalized by a unitary transformation.  To see this, recall that any 
matrix M can be written as a sum of a Hermitian matrix and an anti Hermitian matrix,  
 

† †

2 2
M M M MM A iB+ −

= + = +  
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where both A, B are Hermitian.  This is the matrix analogue of writing an arbitrary complex 
number as a sum of real and imaginary parts. 
 
If A, B commute, they can be simultaneously diagonalized (see the previous section), and 
therefore M can be diagonalized.  Now, if a unitary matrix is expressed in this form 

with A, B  Hermitian, it easily follows fromU A iB= + † † 1UU U U= =  that A, B commute, so any 
unitary matrix U can be diagonalized by a unitary transformation.  More generally, if a matrix M 
commutes with its adjoint †M , it can be diagonalized. 
 
(Note: it is not possible to diagonalize M unless both A, B are simultaneously diagonalized.  This 
follows from  being Hermitian and antiHermitian for any unitary operator U, so 
their off-diagonal elements cannot cancel each other, they must all be zero if M has been 
diagonalized by U, in which case the two transformed matrices  are diagonal, 
therefore commute, and so do the original matrices A, B.)   

† †,U AU U iBU

† †,U AU U iBU

 
It is worthwhile looking at a specific example, a simple rotation of one orthonormal basis into 
another in three dimensions.  Obviously, the axis through the origin about which the basis is 
rotated is an eigenvector of the transformation.  It’s less clear what the other two eigenvectors 
might be—or, equivalently, what are the eigenvectors corresponding to a two dimensional 
rotation of basis in a plane?  The way to find out is to write down the matrix and diagonalize it.  
 
The matrix 

cos sin
( ) .

sin cos
U

θ θ
θ

θ θ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 

 
Note that the determinant is equal to unity. The eigenvalues are given by solving 
 

cos sin
0  to give . 

sin cos
ie θθ λ θ

λ
θ θ λ

±−
= =

− −
 

 
The corresponding eigenvectors satisfy 
 

1 1

2 2

cos sin
. 

sin cos
iu u

e
u u

θθ θ
θ θ

± ±
±

± ±

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
The eigenvectors, normalized, are: 

1

2

11 .
2

u
iu

±

±

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟±⎝ ⎠⎝ ⎠

 

 
Note that, in contrast to a Hermitian matrix, the eigenvalues of a unitary matrix do not have to be 
real. In fact, from , sandwiched between the bra and ket of an eigenvector, we see that 
any eigenvalue of a unitary matrix must have unit modulus—it’s a complex number on the unit 
circle.  With hindsight, we should have realized that one eigenvalue of a two-dimensional 

† 1U U =
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rotation had to be ie θ , the product of two two-dimensional rotations is given be adding the angles 
of rotation, and a rotation through π  changes all signs, so has eigenvalue -1.   Note that the 
eigenvector itself is independent of the angle of rotation—the rotations all commute, so they 
must have common eigenvectors. Successive rotation operators applied to the plus eigenvector 
add their angles, when applied to the minus eigenvector, all angles are subtracted. 
 
previous  index  next
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