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Analytic Functions 
Suppose we have a complex function f = u + iv of a complex variable z = x + iy, defined in some 
region of the complex plane, where u, v, x, y are real. That is to say,  
 

( ) ( , ) ( , ),f z u x y iv x y= +  
 
with u(x,y) and v(x,y) real functions in the plane.   
 
We now assume that in this region f(z) is differentiable, that is to say,  
 
 

0

( ) ( ) ( )lim
z

df z f z z f z
dz zΔ →

+ Δ −
=

Δ
 

 
is well-defined. What does this tell us about the functions u(x,y) and v(x,y), the real and 
imaginary parts of f(z)? 
 
In fact, the property of differentiability for a function of a complex variable tells us a lot! It does 
not just mean that the function is reasonably smooth.  The crucial difference from a function of a 
real variable is that Δ z can approach zero from any direction in the complex plane, and the limit 
in these different directions must be the same.  Of course, there are only two independent 
directions, so what we are really saying is  
 

( ) ( ) ,
( )

f x iy f x iy
x iy

∂ + ∂ +
=

∂ ∂
 

 
which we can write in terms of u,v: 
 

( , ) ( , ) ( , ) ( , .
( ) ( )

u x y v x y u x y v x yi i )
x x iy iy

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
 

  
Equating real and imaginary parts of this equation we find: 
 

,    .u v v u
x y x y
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

 

 
These are called the Cauchy-Riemann equations. 
 
It immediately follows that both u(x,y) and v(x,y) must satisfy the two-dimensional Laplacian 
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equation,  
2 2

2 2
2 2

( , ) ( , ) 0,  that is, 0 and 0.u x y u x y u v
x y

∂ ∂
+ = ∇ = ∇

∂ ∂
=  

 
Notice that this implies (just as for an electrostatic potential) that u(x,y) cannot have an absolute 
minimum or maximum inside the region of analyticity. If df(z)/dz = 0, but the second-order 
partial derivatives are nonzero, then they must have opposite sign, signaling a saddlepoint. In the 
general case, a two-dimensional version of Gauss’ theorem can be used to show there is no local 
extremum.  
  
Furthermore,  

. , . ,u u v vu v
x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
∇ ∇ = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

0. 

 
That is to say, the contour lines of constant u(x,y) are everywhere orthogonal to the contour lines 
of constant v(x,y).  (The gradient being orthogonal to the contour lines everywhere.) 
 
The important point is that just requiring differentiability of a function of a complex variable 
imposes a strong constraint on its real and imaginary parts, the functions u(x,y) and v(x,y).   
 

A Simple Example: f (z) = z 2. 
It is worthwhile building a clear picture of the real and imaginary parts of the function z2.  The 
real part is x2 − y2, and its contour lines in the square −1 to 1 are shown below.  The darker 
shades are the lower ground. At the origin, there is a saddlepoint with higher ground in both 
directions of the real axis, lower ground in the pure imaginary directions. The lines x = y, x = −y 
(not shown) are contours at the same level (zero) as the origin.  

 
What about the imaginary part? Imz2 = 2xy has contours: 
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Putting the two sets of contour lines on the same diagram it is clear that they always cut each 
other orthogonally: 

 
(Incidentally, this picture has a physical realization.  It represents the field lines and 
equipotentials of a quadrupole magnet, used for focusing beams of charged particles.) 

Another Example: f(z) = 1/z 
The definition of differentiation above can be used to show that 
  

2

1 1d
dz z z

= −  
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just as for a real variable, so the function can be differentiated everywhere in the complex plane 
except at the origin.  The singularity at the origin is termed a “pole”, for obvious reasons.  

Contour Integration: Cauchy’s Theorem 
Cauchy’s theorem states that the integral of a function of a complex variable around a closed 
contour in the complex plane is zero if the function is analytic in the region enclosed by the 
contour. 
 
This theorem can be proved at various levels of rigor (see Byron and Fuller for details), we shall 
give a basic physicist’s proof using Stokes theorem, that the integral of a vector function around 
a contour (now in ordinary, not complex, space) is equal to the integral of the curl of that 
function over an area spanning the contour, provided of course the curl is well-defined 
everywhere on the area,  
 

curl .P ds P d A⋅ = ⋅∫ ∫  
  
Taking the special case where the contour and the area are confined to the x, y plane, and writing 

,  , and Stokes’ theorem becomes: ( ),P P Q= (curl / /P Q dx P y= ∂ − ∂ ∂ )
 

( ) ,Q PPdx Qdy dxdy
x y

⎛ ⎞∂ ∂
+ = −⎜ ⎟∂ ∂⎝ ⎠

∫ ∫∫  

 
known in this form as Green’s theorem (and easy to prove: the two terms are separately equal, 

, this can be established by dividing the area into strips of infinitesimal 
width dy parallel to the x-axis, integrating with respect to x within a strip, to give 

, the co-ordinates of the points on the contour at the ends 

of the strip, then adding the contributions from all the parallel strips just gives the integral around 
the contour.) 

( )/Qdy Q x dxdy= ∂ ∂∫ ∫∫

( ) ( ) (2 1 1 1/ ,
strip

Q x dx Q x y Q x y∂ ∂ = −∫ ),

 
Now back to the complex plane: write as before 
 

( ) ( ) ( ), , ,z x iy f z u x y iv x y= + = +  
from which 
 

( ) ( )( ) ( ) ( ).f z dz u iv dx idy udx vdy i vdx udy= + + = − + +∫ ∫ ∫ ∫  
 
Now apply Green’s theorem to the two integrals on the right, replacing P, Q with first u, -v then 
with v, u. This gives: 
 

v u u vdxdy i dxdy
x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫∫ ∫∫  
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and both these integrals are identically zero from the Cauchy-Riemann equations. 
 
So the integral of a function of a complex variable around a closed contour in the complex plane 
can only depend on nonanalytic behavior inside the contour.  Consider for example a pole, take 
the simplest case of integrating 1/z around the unit circle, the conventional direction is 
counterclockwise.  Then 1/ ,i iz e dz ie dθ θ θ−= = , 
 

2 .dz id i
z

θ π= =∫ ∫  

This is called the residue at  the pole. 

Moving the Contour of Integration 
Cauchy’s theorem has a very important consequence:  for an integral from, say, za to zb in the 
complex plane, moving the contour in a region where the function is analytic will not affect the 
result, because the difference between the integral over the original contour and that over the 
shifted contour is an integral around a closed circuit, and therefore zero, provided the function is 
analytic in the region enclosed. 
 
For an integral around a closed contour, if the only singularities enclosed by the contour are 
poles, the contour may be shrunk and broken to become a sum of separate small contours, one 
around each pole, then the integral around the original contour is the sum of the residues at the 
poles. 

Other Singularities: Cuts, Sheets, etc. 
Poles are of course not the only possible singularities. For example, log z has a singularity at the 
origin.  Now, log log log .iz re r iθ θ= = +  The singularity at the origin is from the log r term, but 
notice that if we go around the unit circle, θ  increases by 2π, and if we go around again it 
increases by a further 2π.  This means that the value of log z is not uniquely defined: any given 
point in the complex plane has values differing by 2nπi, n any integer.  This is handled by 
replacing the single complex plane with a pile of sheets, and a cut going out from the origin. To 
find  log z, you need to know not only z, but also which sheet you’re on: going up one sheet 
means log z has increased by 2πi.  When you cross the cut, you go to the next sheet, like a 
multilevel parking garage.  The cut can go out from the origin in any direction, the standard 
arrangement is along the real axis, either positive or negative. 
 
The square root function similarly has a cut, but only two sheets. 

Evaluating Rapidly Oscillating Integrals by Steepest Descent 

How to evaluate in an unambiguous fashion: an introduction to moving the contour of 

integration and the Method of Steepest Descent. 

2iaxe dx
∞

−∞
∫
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The familiar Gaussian integral 
2axe dx

a
π∞

−

−∞

=∫  is easy to understand.  Plotting the integrand, 

(here for a = 1) there is a peak of height 1 and width of order 1/√a.    
 

 

But what about the result 
2iaxe dx

ia
π∞

−

−∞

=∫ ?   This (correct) result is far less obvious!  Here the 

integrand is always on the unit circle in the complex plane, and equal to 1 at x = 0.  It is 
instructive to plot the phase of the integrand 

2iaxe−

( ) 2x axϕ = − as a function of x (taking a = 1 in the 
graph below).  

 
The phase is stationary at the origin, so contributions from that region add coherently.  To help 
visualize the integrand better, here’s a plot of the real part: 
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It is evident that almost all the contribution to the integral comes from the central region where 
the phase is stationary, the increasingly rapid oscillations away from the origin ensuring that very 
little comes from elsewhere. 
 
So how do we actually evaluate the integral?  In the complex plane z = x + iy, we can write 
  

( )2 22 2 (along real axis) .ia x y ixyiazI e dz e dz
∞ ∞

− − +−

−∞ −∞

= =∫ ∫  

 
Notice that the amplitude (or modulus) of the integrand 2 1axye =  on the real axis, so it does not 
go to zero at infinity, although there are essentially no contributions from large x because of the 
rapid oscillations.  
 
A cleaner way to see what’s going on is to rotate the contour of integration around the origin to 
the 45 degree line x = −y.  It’s safe to do this because the amplitude of the integrand decreases on 
going from the real axis into the region xy < 0, and in fact tends to zero on going to infinity in 
that region.  

xy < 0 

xy < 0 

x 

y 

 
(To give a more precise argument, suppose we replace the infinite integral by one from –L  to L, 
so we will be taking the limit of L going to infinity at the end.  Then the distorted contour has 
first a vertical part, from (-L,0) to (-L, L) then the diagonal contour from (-L, L) to (L, -L), finally 
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another vertical leg from (L, -L) to (L, 0).  Now, on the first vertical part, the integral is clearly 
less than the integral of the modulus, that is, 
 

  ( )2 2
( , )

2 2 2

( ,0) 0 0

1/ 2
L L L

ia x y ixy aLy aLy

L

e dz e dy e dy aL
− ∞

− − + − −

−

< < =∫ ∫ ∫
 
so in the limit of the original integral being over the whole real axis, the contributions from the 
vertical parts of the contour vanish. 
 

The integral becomes  with 
22axe d

∞
−

−∞
∫ z / 42 ,idz e dxπ−=  so 

2/ 4 2 / 42 2
2

i ax iI e e dx e
a ia

π π ,π π∞
− − −

−∞

= =∫ =  

 
the required result. 

General Steepest Descent Method 
In fact, the contour rotation trick used above to make the integral easier to evaluate is a particular 
case of a method having wide applicability in evaluating contour integrals of the form ( )iaf ze d∫ z . 
The basic strategy is to distort the contour of integration in the complex z-plane so that the 
amplitude of the integrand is as small as possible over as much of the contour of integration as 
possible.  Actually, that is exactly what we did in the example above.  To see this, it is helpful to 
plot the contour lines (lines of constant value) of the modulus of the integrand, 

2 2 .iaz axye e− =  
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The convention here is white for the high ground, black for the valleys.  
 
We want to keep the contour of integration as low as possible for as long as possible.  The map 
above is of a “saddlepoint”: hills rise to the northeast and the southwest of the origin, valleys fall 
away to the northwest and the southeast.  The strategy is to stay in the valleys (small integrand) 
as much as possible—however, to get from −∞ to +∞ we have to get from one valley to the 
other, and that means going over the saddlepoint at the origin.  Obviously, to get the integrand as 
small as possible at all stages in the integration we must go down from the saddlepoint in both 
directions by the steepest possible route, and it is evident that this is right down the center of the 
valley, just the contour we chose above.  Note that this steepest descent path is also one of 
stationary phase. This is because for any analytic function of a complex variable f(z), the lines of 
constant Ref(z) are perpendicular to those of constant Imf(z).  For a function ( )f ze , the steepest 
descent line is perpendicular to the lines of constant Ref(z), and is therefore a line of constant 
Imf(z), that is, constant phase of ( )f ze .    

Saddlepoints of Analytic Functions 
Suppose we have a function f(z) analytic in some region R of the complex plane, and at some 
point z0 inside R the derivative df(z)/dz = 0. Then in the neighborhood of z0, 
  

21
0 0 02( ) ( ) ''( )( ) ...f z f z f z z z= + − +  

 
Close enough to z0 we can neglect the higher order terms, and for the case of ( )0f z′′  real, the 
contour lines of the real and imaginary parts of f(z) will then be exactly those we have plotted for 
z2 above.  For ( )0f z′′  complex, the plots will be rotated by an angle equal to the phase of 

( )0f z′′ .  
 
That is to say, for any analytic function, near any point where df(z)/dz = 0, the real and imaginary 
parts of the function have saddlepoints with contour maps rotated versions of those above.  

Integrating Through a Saddlepoint 
We consider now integrals of the form 

( )f z

C

e d∫ z  

where C is some path in a region where f(z) is analytic.  This means the value of the integral will 
not be affected by distorting the path, provided it stays in the region of analyticity.  (The path of 
integration is usually called the contour of integration—we’ll call it path here, to avoid confusion 
with our contours, which have the standard geographic meaning, joining points having the same 
value of some parameter.)   
 
Note that with the exponential form of the integrand, the real part of f(z) determines the 
magnitude of the integrand, the imaginary part of f(z) determines its phase.  
 
The strategy is to arrange the path of integration so that as much as possible of it is in the valleys, 
where the integrand is small, then to go over the saddlepoint by the steepest possible route, 
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which would be staying on the imaginary axis in the case of z2 plotted above. It is important to 
note that this “steepest descent” route is also a path along which the imaginary part of f(z) 
remains constant, so the contributions along this path are all in phase, that is to say, they add 
coherently. 
 
The bottom line is that by directing the path of integration through the saddlepoint along the 
steepest route for the magnitude of the integrand, the biggest contributions to the integral are all 
in phase.  Along this path, the integral has standard Gaussian form.  If the function f(z) is 
sufficiently large, it may be that the contribution of the integral away from the saddlepoint can be 
neglected.  This method is therefore often valuable in cases where some parameter becomes 
large: we give a number of examples to clarify this point.  

Saddlepoint Estimation of n! 
We use the identity  

( )

0 0

!  with ( )n t f tn t e dt e dt f t n t
∞ ∞

−= = =∫ ∫ ln .t−  

 
To picture tne-t, here it is for n = 10: 
 

 
 
Note that  

( )

( ) 2

1,    0 for ,

.

nf t f t
t

nf t
t

′ ′ n= − = =

′′ = −
 

Therefore, in the neighborhood of the maximum value of f(t) at t = n,  
 

21( ) ln ( ) higher order terms.
2

f t n n n t n
n

= − − − +  

 
For integer n, the function is analytic in any finite region of the complex plane. Taking n = 10, as 
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in the real-axis graph above, and plotting the contours of Re(tne-t) in the neighborhood of t = 10, 
we find: 

 
 

It is clear that the integral along the real axis is in fact a steepest descent path. The reason we 
look at this straightforward case is to gain some experience about when it is reasonable to throw 
away all the contribution to the integral except that near the saddlepoint.  If we simply take 
 

( ) 2 21 1( ) ( ) ln ( )
2 2

f t f n t n n n n t n
n n

= − − = − − −  

 
and take the t integration to be over the whole real axis, not just positive t, it is a Gaussian 
integral and 
  

( ) ( ) ( )( )21/2

0 0

! 2f t f n n t n n nn e dt e e dt nn eπ
∞ ∞

− − .−= ≅ =∫ ∫  

 
More precise, and considerably more complicated, methods give the leading correction to this 
expression.  It is down by a factor of 1/12n, so the naïve Gaussian saddlepoint result is accurate 
within 1% for n = 10, and improves as n increases. 

The Delta Function 
Recall that the delta function can be defined by the limit of a Gaussian integral 
 

( )
2 2

1/ 22

/ 41
0 4

( ) xx Lim e
π

δ − Δ

Δ→ Δ
= . 

 
It is easy to see how this leads to  

( ) ( ) (0)f x x dx fδ =∫  



 12

 
 
for an integral along the real axis with a function f(x) reasonably well-behaved near the origin.  
Shankar mentions that the definition also works even if 2Δ  is replaced by .  In that case, the 
absolute value of the function is the same everywhere on the real axis, and increases as 

2iΔ
1−Δ  on 

taking Δ  small.  The reason it still works is that the phase oscillations are so rapid everywhere 
except at the origin, where the phase is momentarily stationary, so all the contribution comes 
from there.   
 
However, it is easier to believe 
 

( )
2 2

1/ 22

/ 41
0 4

( ) x i

i
x Lim e

π
δ − Δ

Δ→ Δ
=  

 
on going into the complex plane.  If we change variables from x to ξ, where x2 = iξ 2, the integral 
again becomes a simple real Gaussian. But, regarding x as a complex variable, transforming to ξ 
is just equivalent to rotating the axes by π/4, or multiplying by the square root of i.  The steepest 
descent route through the origin is now along the line at π/4 to the real axis.  So this is a perfectly 
good definition of the δ-function provided we can distort the path of integration from the real 
axis to the line x = y.  (Strictly speaking, the path would now include two octants of a circle at 
very large R—their contribution vanishes in the limit of R going to infinity.) 
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