
The Density Matrix 
Pure States and Mixed States 
Our treatment here more or less follows that of Sakurai, beginning with two imagined Stern-
Gerlach experiments.  In that experiment, a stream of (non-ionized) silver atoms from an oven is 
directed through an inhomogeneous vertical magnetic field, and the stream splits into two.  The 
silver atoms have nonzero magnetic moments, and a magnetic moment in an inhomogeneous 
magnetic field experiences a nonzero force, causing the atom to veer from its straight line path,  
the magnitude of the deflection being proportional to the component of the atom’s magnetic 
moment in the vertical (field) direction.   The observation of the beam splitting into two, and no 
more, means that the vertical component of the magnetic moment, and therefore the associated 
angular momentum, can only have two different values.  From the basic analysis of rotation 
operators and the properties of angular momentum that follow, this observation forces us to the 
conclusion that the total angular momentum of a silver atom is 1

2 .  Ordinary orbital angular 
momenta cannot have half-integer values; this experiment was one of the first indications that the 
electron has a spin degree of freedom, an angular momentum that cannot be interpreted as orbital 
angular momentum of constituent parts.  The silver atom has 47 electrons, 46 of them have total 
spin and orbital momenta that separately cancel, the 47th has no orbital angular momentum, and 
its spin is the entire angular momentum of the atom.  
 
Here we shall use the Stern-Gerlach stream as an example of a large collection of quantum 
systems (the atoms) to clarify just how to describe such a collection, often called an ensemble. 
To avoid unnecessary complications, we only consider the spin degrees of freedom.  We begin 
by examining two different streams:  
 
Suppose experimentalist A prepares a stream of silver atoms such that each atom is in the spin 
state Aψ :  
  

 ( )1
2Aψ = ↑ + ↓ . 

 
Meanwhile, experimentalist B prepares a stream of silver atoms which is a mixture: half the 
atoms are in state ↑  and half are in the  state ↓ : call this mix B.   
 
Question: can we distinguish the A stream from the B stream?  
 
Evidently, not by measuring the spin in the z-direction!  Both will give up 50% of the time, down 
50%.   
 
But: we can distinguish them by measuring the spin in the x-direction: the Aψ  quantum state is 
in fact just that of a spin in the x-direction, so it will give “up” in the x-direction every time—
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from now on we call it x↑ , whereas the state ↑  (“up” in the z-direction) will yield “up” in the 

x-direction only 50% of the time, as will ↓ . 
 
The state Aψ = ↑x  is called a pure state, it’s the kind of quantum state we’ve been studying this 
whole course. B, in contrast, is called a mixed state: the kind that actually occurs to a greater or 
lesser extent in a real life stream of atoms, different pure quantum states occurring with different 
probabilities, but with no phase coherence between them.  In other words, these relative 
probabilities in B of different quantum states do not derive from probability amplitudes, as they 
do in finding the probability of spin up in stream A: the probabilities of the different quantum 
states in the mixed state B are exactly like classical probabilities.  That being said, though, to find 
the probability of measuring spin up in some such mixed state, one first uses the classical-type 
probability for each component state, then for each quantum state in the mix, one finds the 
probability of spin up in that state by the standard quantum technique.  
 
That is to say, for a mixed state in which the system is in state iψ  with probability wi,  Σ wi =1, 
the expectation value of an operator A is  
 

i i iA w Aψ ψ=∑  
 
and we should emphasize that these iψ  do not need to be orthogonal: for example one could be 

x↑ , another z↑ . (We put the usually omitted z in for emphasis.) 

The Density Matrix 
We can rewrite the above equation for A  as 
 

( )ˆ ˆTrace   where  .i i iA A wρ ρ ψ= = ψ∑  
 
This ρ̂  is called the density matrix: its matrix form is made explicit by considering states iψ   
in a finite N-dimensional vector space (such as spins or angular momenta)  
 
 ( )i i j

j

V jψ =∑  

 
where the j  are an orthonormal basis set, and ( )i j

V is the jth component of a normalized vector 

Vi.   Therefore, 
  
 ( ) ( )†

, , ,

ˆ i i i i i i jkj k
i j k j k

w w V V j k j kρ ψ ψ ρ= = =∑ ∑ ∑  

and evidently 
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 ( )
, , , ,

ˆTrace .jk jk jk kj
n j k j k j k

A A n j k A n k A jρ ρ ρ ρ= = = =∑ ∑ A∑  

 
(Since ρjk is just a number, jk jk jk njn j n jρ ρ ρ= = δ

)

.) 
 

( ˆTrace Aρ  is basis-independent, the trace of a matrix being unchanged by a unitary 
transformation, since it follows from TrABC = TrBCA that     

 
† †Tr Tr Tr   for 1U AU AUU A UU †= = = . 

 
Note that since the vectors Vi are normalized, ( ) ( )† 1,i ij j

j

V V =∑ with the i not summed over, and 

Σ wi =1, it follows that ˆTr 1ρ =  (also evident by putting A = 1 in the equation for A ). 
 
For a system in a pure quantum state ψ ,  ρ̂ ψ ψ= , just the projection operator into that 

state, and 2ˆ ˆρ ρ= , as for all projection operators.  (This is not the case for a mixed state: see the 
examples below.)  If a basis is chosen so that ψ  is a member of the basis, ρ̂  is a matrix with 

every element zero except the one diagonal element corresponding to ψ ψ , which will be 
unity.  In a general basis, ρ̂  will not be diagonal.  

Some Simple Examples 

First, our case A above: (1
2x↑ = ↑ + ↓ )   In the standard ,↑ ↓  basis,  

  

 ( )1/ 2 1/ 2 1/ 2
ˆ 1/ 2 1/ 2

1/ 2 1/ 21/ 2
x xρ

   
= ↑ ↑ = =       

 

 
and 

 

( )

( )

1/ 2 1/ 2 0 1
ˆTr Tr

1/ 2 1/ 2 1 02 2

1/ 2 1/ 2 1 0
ˆTr Tr 0.

1/ 2 1/ 2 0 12

x x

z z

s s

s s

ρ

ρ

  
= = =  

  

  
= =   −  

=

 

Notice that 2ˆ ˆρ ρ= . 
 
Now, case B: 50% in the state ↑ ,  50% ↓ .  The density matrix is 
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( ) ( )

1 1ˆ
2 2

1 0 11 1 11 0 0 1
0 1 02 2 2

ρ = ↑ ↑ + ↓ ↓

     
= + =     

     

0
.

1

 

 

This is proportional to the unit matrix, so 1ˆ Tr 0,
2 2xsρ σTr x= =  and similarly for sy and sz, 

since the Pauli σ-matrices are all traceless.  Note also that 2 1
2ˆ ˆ ˆρ ρ ρ= ≠ , as is true for all mixed 

states. 
 

Finally, let us consider a 50%:50% mixed state of spins in ( )1
2x↑ = ↑ + ↓ , “up” along the 

x-axis, and  (1
2x↓ = ↑ − ↓ ) , “down” in the x-direction.  

 
It is easy to check that 
 

 
1/ 2 1/ 2 1/ 2 1/ 2 1 01 1 1 1 1ˆ .
1/ 2 1/ 2 1/ 2 1/ 2 0 12 2 2 2 2x x x xρ

−    
= ↑ ↑ + ↓ ↓ = + =    −    





 

 
This is exactly the same density matrix we found for 50% in the state ↑ ,  50% ↓ !  The 
reason is that both formulations describe a state about which we know nothing—we are in a state 
of total ignorance, the spins are completely random, all directions are equally likely.  The density 
matrix describing such a state cannot depend on the direction we choose for our axes.  
 
Another two-state quantum system that can be analyzed in the same way is the polarization state 
of a beam of light, the basis states being polarization in the x-direction and polarization in the y-
direction, for a beam traveling parallel to the z-axis. Ordinary unpolarized light corresponds to 
the random mixed state, with the same density matrix as in the last example above.  

Time Evolution of the Density Matrix 
In the mixed state, the quantum states evolve independently according to Schrödinger’s equation, 
so  

 [ ]ˆ ˆ, .i i i i i i
di w H w H H
dt
ρ ψ ψ ψ ψ= − =∑ ∑ ρ  

 
Note that this has the opposite sign from the evolution of a Heisenberg operator, not surprising 
since the density operator is made up of Schrödinger bras and kets. The equation is the quantum 
analogue of Liouville’s theorem in statistical mechanics. Liouville’s theorem describes the 
evolution in time of an ensemble of identical classical systems, such as many boxes each filled 
with the same amount of the same gas at the same temperature, but the positions and momenta of 
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the individual atoms are randomly different in each.  Each box can be classically described by a 
single point in a huge dimensional space, a space having six dimensions for each atom (position 
and momentum, we ignore possible internal degrees of freedom).  The whole ensemble, then, is a 
gas of these points in this huge space, and the rate of change of local density of this gas, from 
Hamilton’s equations, is [ ]/ tρ ρ∂ ∂ = − , H , the bracket now being a Poisson bracket.  Anyway, 
this is the classical precursor of, and the reason for the name of, the density matrix. 
 

Thermal Equilibrium 
A system in thermal equilibrium is represented in statistical mechanics by a canonical ensemble.  
If the eigenstate i

/E k

 of the Hamiltonian has energy Ei, the relative probability of the system being 

in that state is e i T Ee iβ− = − in the standard notation.  Therefore the density matrix is: 
 

 1ˆ ,   i

H
E

i

ee i i
Z Z

β
βρ

−
−= =∑  

where  
 
 Tr .iE H

i
Z e eβ β− −= =∑  

 
Notice that in this formulation, apart from the normalization constant Z, the density operator is 
analogous to the propagator U t  for an imaginary time ( ) /iHte−= t i β= − .   
 
At zero temperature (β = ∞) the probability coefficients are all zero except for the 
ground state: the system is in a pure state, and the density matrix has every element zero except 
for a single element on the diagonal.  At infinite temperature, all the w

/iE
iw e Zβ−=

i are equal: the density 
matrix is just 1/N  times the unit matrix, where N is the total number of states available to the 
system.  In fact, the entropy of the system can be expressed in terms of the density matrix: 

( )ˆ ˆTr lnS k ρ ρ= − .  
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