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Introduction 
We begin with a brief review of Fourier series. Any periodic function of interest in physics can 
be expressed as a series in sines and cosines—we have already seen that the quantum wave 
function of a particle in a box is precisely of this form.  The important question in practice is, for 
an arbitrary wave function, how good an approximation is given if we stop summing the series 
after N  terms.  We establish here that the sum after N terms, ( )Nf θ , can be written as a 
convolution of the original function with the function 
 

( )( )1 1
2 2( ) 1/ 2 sin( ) / sin ,N x N xδ π= + x  

that is,  
 

( ) ( ) ( )N Nf f d
π

π

θ δ θ θ θ θ
−

′ ′ ′= −∫ . 

 
The structure of the function ( )N xδ  (plotted below), when put together with the function ( )f θ , 
gives a good intuitive guide to how good an approximation the sum over N terms is going to be 
for a given function ( )f θ .  In particular, it turns out that step discontinuities are never handled 
perfectly, no matter how many terms are included.  Fortunately, true step discontinuities never 
occur in physics, but this is a warning that it is of course necessary to sum up to some N where 
the sines and cosines oscillate substantially more rapidly than any sudden change in the function 
being represented.   
 
We go on to the Fourier transform, in which a function on the infinite line is expressed as an 
integral over a continuum of sines and cosines (or equivalently exponentials ).  It turns out 
that arguments analogous to those that led to 

ikxe
( )N xδ  now give a function ( )xδ  such that 

( ) ( ) ( )  .f x x x f x dδ
∞

−∞
x′ ′ ′= −∫  

 
Confronted with this, one might well wonder what is the point of a function ( )xδ  which on 

convolution with f(x) gives back the same function f(x).  The relevance of ( )xδ will become 
evident later in the course, when states of a quantum particle are represented by wave functions 
on the infinite line, like f(x), and operations on them involve integral operators similar to the 
convolution above.  Working with operations on these functions is the continuum generalization 
of matrices acting on vectors in a finite-dimensional space, and ( )xδ  is the infinite-dimensional 
representation of the unit matrix.  Just as in matrix algebra the eigenstates of the unit matrix are a 
set of vectors that span the space, and the unit matrix elements determine the set of dot products 
of these basis vectors, the delta function determines the generalized inner product of a continuum 
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basis of states.  It plays an essential role in the standard formalism for continuum states, and you 
need to be familiar with it! 

Fourier Series 
Any reasonably smooth real function ( )f θ  defined in the interval π θ π− < ≤  can be expanded 
in a Fourier series, 
 

0
2

1
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n n
n

f A n B nθ θ θ
∞

=
= + +∑

 
 
where the coefficients can be found using the orthogonality condition, 
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π

π
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and the same condition for the sin  'snθ to give: 
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Note that for an even function, only the An are nonzero, for an odd function only the Bn are 
nonzero.  

How Smooth is “Reasonably Smooth”? 
The number of terms of the series necessary to give a good approximation to a function depends 
on how rapidly the function changes.  To get an idea of what goes wrong when a function is not 
“smooth”, it is instructive to find the Fourier sine series for the step function 
 

( ) ( )1 for 0, 1 for 0 .f fθ π θ θ θ π= − − < ≤ = < ≤  
 
Using the expression for Bn above it is easy to find: 
 

4 sin 3 sin 5( ) sin ... .
3 5

f θ θθ θ
π
⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 

 
Taking the first half dozen terms in the series gives: 
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As we include more and more terms, the function becomes smoother but, surprisingly, the initial 
overshoot at the step stays at a finite fraction of the step height.  However, the function recovers 
more and more rapidly, that is to say, the overshoot and “ringing” at the step take up less and less 
space.  This overshoot is called Gibbs’ phenomenon, and only occurs in functions with 
discontinuities. 

How the Sum over N Terms is Related to the Complete Function 
To get a clearer idea of how a Fourier series converges to the function it represents, it is useful to 
stop the series at N terms and examine how that sum, which we denote ( )Nf θ , tends towards 

( )f θ .  
 
So, substituting the values of the coefficients 
  

1

1
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n
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in the series 

0
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gives 



 4

1

1

1 1( ) ( ) (cos cos sin sin ) ( )
2

1 1( ) cos ( ) ( ) .
2

N

N
n

N

n

f f d n n n n f d

f d n f d

π π

π π

π π

π π

θ θ θ θ θ θ θ θ θ
π π

θ θ θ θ θ θ
π π

=− −

=− −

′ ′ ′ ′ ′ ′= + +

′ ′ ′ ′ ′= + −

∑∫ ∫

∑∫ ∫
 

 
We can now use the trigonometric identity  
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to find 
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where 

1
2
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2
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N xx
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δ
π

+
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(Note that proving the trigonometric identity is straightforward: write ixz e= , so 

(1
2cos n nnx z z−= + ) , and sum the geometric progressions.)   

 
Going backwards for a moment and writing  
 

( )
1

1 1cos
2

N

N
n

x nδ
π =
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∑ x  

 
 

 
it is easy to check that  

( ) 1.N x dx
π

π

δ
−

=∫
 

 
 
To help visualize ( )Nδ θ , here is N = 20: 
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We have just established that the total area under the curve = 1, and it is clear from the diagram 
that almost all this area is under the central peak, since the areas away from the center are almost 
equally positive and negative. The width of the central peak is ( )1

2/ Nπ + , its height ( )1
2 / .N π+  

  
Exercise: for large N, approximately how far down does it dip on the first oscillation?  ( 2/ .N π ) 
 
For functions varying slowly compared with the oscillations, the convolution integral 
 

( ) ( ) ( )N Nf f d
π

π

θ δ θ θ θ θ
−

′ ′ ′= −∫  

 
will give ( )Nf θ  close to ( )f θ , and for these functions ( )Nf θ  will tend to ( )f θ as N increases.  
 
It is also clear why convoluting this curve with a step function gives an overshoot and 
oscillations.  Suppose the function ( )f θ  is a step, jumping from 0 to 1 at 0.θ =   From the 
convolutionary form of the integral, you should be able to convince yourself that the value of 

( )Nf θ  at a point θ  is the total area under the curve ( )Nδ θ  to the left of that point (area below 
zero—that is, below the x-axis—of course counting negative). For 0,θ =  this must be exactly 
0.5 (since all the area under ( )Nδ θ  adds to 1).  But if we want the value of ( )Nf θ  at 
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(/ 2 1Nθ π= )+  (that is, the first point to the right of the origin where the curve cuts through the 

x-axis), we must add all the area to the left of ( )/ 2 1Nθ π= + , which actually adds up to a total 
area greater than one, since the leftover area to the right of that point is overall negative.  That 
gives the overshoot.  

A Fourier Series in Quantum Mechanics: Electron in a Box 
The time-independent Schrödinger wave functions for an electron in a box (here a one-
dimensional square well with infinite walls) are just the sine and cosine series determined by the 
boundary conditions. Therefore, any reasonably smooth initial wavefunction describing the 
electron can be represented as a Fourier series.  The time development can then be found be 
multiplying each term in the series by the appropriate time-dependent phase factor.  

Important Exercise: prove that for a function ( ) in
n

n
f a e θθ

∞

=−∞

= ∑ , with the an in general complex, 

  

 ( ) 2 21 .
2 n

n

f d a
π

π

θ θ
π

∞

=−∞−

= ∑∫  

 
( The physical relevance of this result is as follows: for an electron confined to the circumference 
of a ring of unit radius,  θ  is the position of the electron.  An orthonormal basis of states of the 
electron on this ring is the set of functions ( )1/ 2 ine θπ  with n an integer, a correctly normalized 

superposition of these states must have 2 1n
n

a
∞

=−∞

=∑ , so that the total probability of finding the 

electron in some state is unity.  But this must also mean that the total probability of finding the 
electron anywhere on the ring is unity—and that’s the left-hand side of the above equation—the 
2  'sπ cancel.) 

Exponential Fourier Series 
In the previous lecture, we discussed briefly how a Gaussian wave packet in x-space could be 
represented as a continuous linear superposition of plane waves that turned out to be another 
Gaussian wave packet, this time in k-space.  The plan here is to demonstrate how we can arrive 
at that representation by carefully taking the limit of the well-defined Fourier series, going from 
the finite interval ( ),π π− to the whole line, and to outline some of the mathematical problems 
that arise, and how to handle them. 
 
The first step is a trivial one: we need to generalize from real functions to complex functions, to 
include wave functions having nonvanishing current.  A smooth complex function can be written 
in a Fourier series simply by allowing An and Bn to be complex, but in this case a more natural 
expansion would be in powers of , .i ie eθ θ−    
 
We write: 
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and retracing the above steps 
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exactly the same expression as before, therefore giving the same ( )Nδ θ .  This isn’t surprising, 

because using ( ) ( )1 1
2 2cos , sinin in in in

in e e n e eθ θ θθ θ−= + = − θ− the first N terms in An, Bn can 

simply be rearranged to a sum over ine θ terms for N n N− ≤ ≤ . 

Electron out of the Box: the Fourier Transform 
To break down a wave packet into its plane wave components, we need to extend the range of 
integration from the ( ),π π−  used above to ( ),−∞ ∞ .  We do this by first rescaling from (−π, π ) 
to (−L/2, L/2) and then taking the limit    .L →∞
 
Scaling the interval from 2π  to L (in the complex representation) gives: 
 

( )
/ 2

2 / 2 /

/ 2

1( )   where  
L

inx L inx L
n n

n L

f x a e a f x e
L

π π
∞

−

=−∞ −

= =∑ ∫ dx
 

 
the sum in n being over all integers. This is an expression for f (x) in terms of plane waves eikx 
where the allowed k’s are 2 /n Lπ , with n = 0, ±1, ±2, …   
 
Retracing the steps above in the derivation of the function ( ) ,N xδ we find the equivalent 
function to be 
 

( ) ( )( )
( )1

sin 2 1 /1 21 2 cos .
sin /

N
L
N

n

N x Lnxx
L L L x

ππδ
π=

+⎛ ⎞= + =⎜ ⎟
⎝ ⎠

∑ L
 

 
 
Studying the expression on the right, it is evident that provided N is much greater than L, this has 
the same peaked-at-the-origin behavior as the ( )N xδ  we considered earlier.  But we are 

interested in the limit  and there—for fixed N—this function ,L →∞ ( )L
N xδ is low and flat.   

 
Therefore, we must take the limit N going to infinity before taking L going to infinity. 
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This is what we do in the rest of this section. 
 
Provided L is finite, we still have a Fourier series, representing a function of period L.  Our main 
interest in taking L infinite is that we would like to represent a nonperiodic function, for example 
a localized wave packet, in terms of plane-wave components.   
 
Suppose we have such a wave packet, say of length L1, by which we mean the wave is exactly 
zero outside a stretch of the axis of length L1.  Why not just express it in terms of an infinite N  
Fourier series based on some large interval (−L/2,L/2) provided the wave packet length L1 is 
completely inside this interval?  The point is that such an analysis would indeed accurately 
reproduce the wave packet inside the interval, but the same sum of plane waves evaluated over 
all the x-axis would reveal an infinite string of identical wave packets L apart!  This is not what 
we want.  
 
As a preliminary to taking L to infinity, let us write the exponential plane wave terms in the 
standard k-notation, 

2 / .nik xinx Le eπ =  
 
So we are summing over an (infinite N) set of plane waves having wave number values  
 

2 / , 0, 1, 2,nk n L nπ= = ± ± … , 
 
a set of equally-spaced k’s with separation 2 /k LπΔ = .    
 
Consider now what happens if we double the basic interval  from (−L/2, L/2) to (−L, L). 
 
The new allowed k values are / , 0, 1, 2,nk n L nπ= = ± ± …  , so the separation is now /k LπΔ = , 
half of what it was before. It is evident that as we increase L, the spacing between successive kn 
values gets less and less. 
 
Going back to the interval of length L, writing ( ) , 2 /n n nLa a k k n Lπ= =  we have 

 

( )2 / 1( ) .nik xinx L
n n

n n

f x a e a k e
L

π
∞ ∞

=−∞ =−∞

= =∑ ∑  

 
Recall that the Riemann integral can be defined by 
 

( ) ( )lim nk o
f k dk f k k

Δ →
= Δ∑∫  

with . , 0, 1, 2,nk n k n= Δ = ± ± …
 
The expression on the right-hand side of the equation for f(x) has the same form as the right-hand 
side of the Riemann integral definition, and here 2 / .k LπΔ =  That is to say,  
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( ) ( )22 ( ) ( )   n nik x ik x ikx
n n

n n

f x a k e a k e k a k e
L
ππ

∞∞ ∞

=−∞ =−∞ −∞

= = Δ =∑ ∑ ∫ dk  

 
in the limit or equivalently .  We are of course assuming here that the function 0,kΔ → L →∞

( )na k , which we have only defined (for a given L) on the set of points kn, tends to a continuous 

function in the limit .   ( )a k L →∞
 
It follows that in the infinite L limit, we have the Fourier transform equations: 
 

( )
/2

2 /

/2

1( ) ( )   and  ( ) lim lim ( )   .
2

L
ikx inx L ikx

nL L
L

f x a k e dk a k La f x e dx f x e dxπ

π

∞ ∞
− −

→∞ →∞
−∞ − −∞

= = = =∫ ∫ ∫  

Dirac’s Delta Function 
Now we have taken both N and L to infinity, what has happened to our function ( )L

N xδ ?   

Remember that our procedure for finding ( ) ( ) in terms of Nf fθ θ gave the equation 
 

1

1 1( ) ( ) cos ( ) ( )
2

N

N
n

f f d n f d
π π

π π

θ θ θ θ θ θ θ
π π =− −

′ ′ ′= + −∑∫ ∫ ′ ′  

and from this we found ( ).Nδ θ   
 
Following the same formal procedure with the ( L = ∞ ) Fourier transforms, we are forced to take 
N infinite (recall the procedure only made sense if N was taken to infinity before L), so in place 
of an equation for ( ) ( ) in terms of ,Nf fθ θ we get an equation for ( )f x in terms of itself!  Let’s 
write it down first and think afterwards: 
 

( )1( ) ( ( ) ) ( )      .
2 2

ikx ikx ik x xdkf x f x e dx e dk e f x dx
π π

∞ ∞ ∞ ∞
′ ′− −

−∞ −∞ −∞ −∞

⎛ ⎞
′ ′ ′ ′= = ⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫  

 
In other words,  

( ) ( ) ( )  f x x x f xδ
∞

−∞
dx′ ′ ′= −∫

 
where 

( ) .
2

ikxdkx eδ
π

+∞

−∞
= ∫  

 
This is the Dirac delta function.  This hand-waving approach has given a result which is not 
clearly defined.  This integral over x is linearly divergent at the origin, and has finite oscillatory 
behavior everywhere else.  To make any progress, we must provide some form of cutoff in k-
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space, then perhaps we can find a meaningful limit by placing the cutoff further and further 
away. 
 
From our arguments above, we should be able to recover ( )xδ as a limit of ( )L

N xδ  by first 
taking N to infinity, then L.  That is to say,   

( ) ( )( ) ( )( )
( )

sin 2 1 /
lim lim lim lim .

sin /
L
NL N L N

N x L
x x

L x L
π

δ δ
π→∞ →∞ →∞ →∞

⎛ ⎞+
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
A way to understand this limit is to write ( )2 1 /M N π= + L  and let M go to infinity before L. 
(This means as we take L large on its way to infinity, we’re taking N far larger!) 
 
So the numerator is just sin .Mx   In the limit of infinite L, for any finite x the denominator is just 

xπ , since sinθ θ=  in the limit of small .θ  
 
From this, 
 

( ) sinlim .
M

Mxx
x

δ
π→∞

=  

 
This is still a rather pathological function, in that it is oscillating more and more quickly as the 
infinite limit is taken. This comes about from the abrupt cutoff in the sum at the frequency N.   
 

To see how this relates to the (also ill-defined) ( )( ) / 2 ikxx dk eδ
+∞

−∞
= ∫ π  ,  recall ( )L

N xδ  came 

from the series 
 

( ) ( )
1

sin 2 1 / 1 21 2 cos .
sin /

N
L
N

n

N x L nxx
L x L L L

π πδ
π =

+ ⎛ ⎞= = +⎜ ⎟
⎝ ⎠

∑  

 
 
Expressing the cosine in terms of exponentials, then replacing the sum by an integral in the large 
N  limit, in the same way we did earlier, writing 2 /nk n Lπ= , so the interval between successive 

is  'snk 2 / ,k LπΔ = so ( ) ( ) ( )2 / :nf k dk L f kπ≅ ∑∫  
 
 

( ) ( )2 /
2 /

2 /

sin 2 /1 .
2

N LN
L inx L ikx
N

n N N L

Nx Ldkx e e
L x

π
π

π

π
δ

π π=− −

= ≅ =∑ ∫  
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So it is clear that we’re defining the ( )xδ  as a limit of the integral , which is 

abruptly cut off at the large values 

( )
2 /

2 /

/ 2
N L

ikx

N L

dk e
π

π

π
−
∫

( )2 /N Lπ± .

)

  In fact, this is not very physical: a much more 
realistic scenario for a real wave packet would be a gradual diminution in contributions from 
high frequency (or short wavelength) modes—that is to say, a gentle cutoff in the integral over k 
that was used to replace the sum over n.  For example, a reasonable cutoff procedure would be to 
multiply the integrand by , then take the limit of small ( 2 2exp k−Δ Δ . 
 
Therefore a more reasonable definition of the delta function, from a physicist’s point of view, 
would be 
 

( )
2 2 2 2

1/ 22

/ 41
0 0 04

( ) ( ),   say.
2

ikx k xdkx Lim e e Lim e Lim x
π

δ δ
π

+∞
−Δ − Δ

Δ
Δ→ Δ→ Δ→Δ−∞

= = =∫
 

 
 
That is to say, the delta function can be defined as the “narrow limit” of a Gaussian wave packet 
with total area 1.  Unlike the function ( )Nδ θ , ( )xδΔ  has no oscillating sidebands, thanks to our 
smoothing out of the upper k-space cutoff, so step discontinuities do not generate Gibbs’ 
phenomenon overshoot—instead, a step will be smoothed out over a distance of order . Δ

Properties of the Delta Function 
It is straightforward to verify the following properties from the definition as a limit of a Gaussian 
wavepacket: 
 

( ) 1,    ( ) 0 for 0.x dx x xδ δ= = ≠∫  
 

1( ) ( ),    ( ) ( ),
| |

x x ax
a

δ δ δ δ= − = x

).

 

 
( ) ( ) (a x x b dx a bδ δ δ− − = −∫  

 

Yet Another Definition, and a Connection with the Principal Value Integral 
There is no unique way to define the delta function, and other cutoff procedures can give useful 
insights.  For example, the k-space integral can be split into two and simple exponential cutoffs 
applied to the two halves, that is, we could take the definition to be 
 

0

0 0
( ) lim .

2 2
ikx k ikx kdk dkx e e eε ε

ε
δ

π π

+∞
−

→ −∞

⎛ ⎞
= +∫ ∫⎜ ⎟

⎝ ⎠
e  

Evaluating the integrals,  
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2 20 0

1 1 1 1( ) lim lim .
2

x
ix ix xε ε

εδ
π ε ε π ε→ →

⎛ ⎞⎛ ⎞= − =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠+
 

 
It is easy to check that this function is correctly normalized by making the change of variable 

tanx ε θ=  and integrating from / 2 to /2.π π−   This representation of the delta function will 
prove to be useful later.  Note that regarded as a function of a complex variable, the delta 
function has two poles on the pure imaginary axis at .z iε= ±  
 
The standard definition of the principal value integral is: 
 

0

( ) ( )( ) lim .
D D

D D

P f x f xf x dx dx dx
x x x

ε

ε
ε

−

→
− −

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫ ∫ ∫  

 
It is not difficult to see that for a continuous differentiable function f(x) this is equivalent to 
 

2 20
( ) lim ( ) .

D D

D D

P xf x dx f x dx
x xε ε→

− −

=
+∫ ∫  

 
Therefore the principal value operator can be written symbolically: 
 

2 20 0

1 1 1lim lim .
2

P x
x x x i xε ε iε ε ε→ →

⎛ ⎞= = +⎜ ⎟+ +⎝ ⎠−
 

 
Putting this together with the similar representation of the delta function above, and taking the 
limit of 0ε →  to be understood, we have the useful result: 
 

1 ( ).P i x
x i x

πδ
ε
=

±
∓  

 
Important Exercises: 
 
1. Prove Parseval’s Theorem: 
 

( ) ( ) ( ) ( )2 2
If  ,   then  . 

2 2
ikxdk dkf x a k e f x dx a k

π π

∞ ∞ ∞

−∞ −∞ −∞

= =∫ ∫ ∫  

 
2. Prove the rule for the Fourier Transform of a convolution of two functions: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

If  ,    ,     
2 2

then .
2

ikx ik x

ikx

dk dkf x a k e g x b k e

dkf x x g x dx a k b k e

π π

π

∞ ∞
′

−∞ −∞

∞ ∞

−∞ −∞

′
′= =

′ ′ ′− =

∫ ∫

∫ ∫
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