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Uncertainty and Non-Commutation

As we discussed in the Linear Algebra lecture, if two physical variables correspond to
commuting Hermitian operators, they can be diagonalized simultaneously—that is, they have a
common set of eigenstates. In these eigenstates both variables have precise values at the same

time, there is no “Uncertainty Principle” requiring that as we know one of them more accurately,

we increasingly lose track of the other. For example, the energy and momentum of a free
particle can both be specified exactly. More interesting examples will appear in the sections on
angular momentum and spin.

But if two operators do not commute, in general one cannot specify both values precisely. Of
course, such operators could still have some common eigenvectors, but the interesting case arises

in attempting to measure 4 and B simultaneously for a state |z//> in which the commutator [A, B ]

has a nonzero expectation value, (z//|[A,B]|z//> #0.

A Quantitative Measure of “Uncertainty”

Our task here is to give a quantitative analysis of how accurately noncommuting variables can be

measured together. We found earlier using a semi-quantitative argument that for a free particle,
Ap-Ax ~h at best. To improve on that result, we need to be precise about the uncertainty AA4
in a state [/ ).

We define AA as the root mean square deviation:

(84) =y |(4~(A)] ). where (4) =(y/| 4|

To make the equations more compact, we define a by

(We’ll put a caret (a hat) on the a to remind ourselves it’s an operator—and, of course, it’s a
Hermitian operator, like A.) We also drop the y bra and ket, on the understanding that this

whole argument is for a particular state. Now
(A4)’ :<(A—<A>)2> =(a*).

Introduce an operator B in exactly similar fashion, B = <B> +b, having the property that
(wi[4.B]lw)=o0.



The Generalized Uncertainty Principle

The quantitative measure of how the combined “uncertainty” of measuring two variables relates
to their lack of commutativity is most simply presented as a

Theorem:
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(A4) (AB) 2 4(i[ 4,B])

(Remark: remember that for 4, B Hermitian, [ 4, B] is antiHermitian: so (i[4,B]) isreal! To
make this clear, take adjoints: if H is hermitian then (<l//|H|l//>)* =(y|H'|y)={y|H|y),s0
(w|H|w) is real. IfK is anti Hermitian, K' =—K, then ((y|K|)) =(w|K'|w)=—(w|K|w),
from which (y|K|y) is pure imaginary.)

Proof of the Theorem:

Define
v)=alv), |w,)=blw).
Then
(A4)' (AB) =(w|@ |y )(w|B* lw) = (w. v ) (v, |v,)
Using Schwartz’s inequality
v ) v, lw.) = v, w,)f

gives immediately
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(Ad) (AB) = [(y,

vl =|(w]ablw)

The operator ab is neither Hermitian nor antiHermitian. To evaluate the mod squared of its
expectation value, we break the amplitude into real and imaginary parts:

(wlably)=(y|3(ab+ba)lw)+ (vt .6 ]|w).

(The first term on the right-hand side is the expectation value of a Hermitian matrix, and so is
real, the second term is the expectation value of an antiHermitian matrix, so is pure imaginary.)

It follows immediately that
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(wlably)| = |wls[a.b]lw)) -

]

But [4, B] =[4,b], so
(a4)’(AB) 2 4(i[4,B]) .

Minimizing the Uncertainty
For a particle in one dimension denote

A=x, B=p= —ihi, so [A4,B]= —ih(xi—ixj =ih.
dx dx dx
(It important in that last step to understand that the operator di operates on everything to its
X

right, and, as we are always finding matrix elements of operators, there will be a following ket it

d d
operates on, s0 —x=1+x—. )
dx dx

We conclude that

Question: Is there a wavefunction for which this inequality becomes an equality?

v, >‘2 =(w.,|w,)(w,|w,). which can only be true if the two vectors are

z//b> = /1|z//a > , or, written explicitly,

That would require Klﬂa
parallel,

Actually , that’s not enough: we also need <W|%(&l; +l§&)| l//> to be zero. (Look at the equation

above giving <W| &Z;| l//> in terms of its real and imaginary parts, and how we used it to establish
the inequality.)

Writing |y, )= 2|y, ) as b|y)= Ad|y) and (w|b=2"(y|é we find

(wls(ab+ba)lw)=(2+2 ) (w|a|v),



so this will be zero if and only if A is pure imaginary.
Turning to the differential equation, we first take the simplest case where <x> and < p> are both

zero. The first requirement just sets the origin, but the second stipulates that our wave function
has no net momentum.

For this simple case,

w,)=A|w,) becomes

_in YO )
dx
d—l// = Zxdx
7%
y = Ceilxz/Zh

and recalling that A is pure imaginary, this is a Gaussian wave packet! It is straightforward to
check that the solution with <x> and < p> nonzero is

i —a(x—<x>)’ /2R
l//()C) — Cel<p>x/he O!(X <x>)
where o =—iA isreal, and C is the usual Gaussian normalization constant.
Exercise: check this.

The conclusion is then that the Gaussian wave packet gives the optimum case for minimizing the
joint uncertainties in position and momentum.

Note that the condition Z;|1p> =Aa | l//> does not mean that |z//> is an eigenstate of either a or b,

but it is an eigenstate of the nonHermitian operator b—Ad=b+iad, with eigenvalue zero. We
shall soon see that this nonHermitian operator and its adjoint play important roles in the quantum
mechanics of the simple harmonic oscillator.



