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Introduction 
In the last lecture , we established that the operators 2 , zJ J  have a common set of eigenkets 

,j m , ( )2 2, 1 , , ,zJ j m j j j m J j m m j m= + = ,  where j, m are integers or half odd 
integers, and we found the matrix elements of ,J J+ −  (and hence those of Jx,  Jy ) between these 
eigenkets. This purely formal structure, therefore, nails down the allowed values of total angular 
momentum and of any measured component.  But there are other things we need to know: for 
example, how is an electron in a particular angular momentum state in an atom affected by an 
external field?  To compute that, we need to know the wave function .ψ   
 
If a system has spherical symmetry, such as an electron in the Coulomb field of a hydrogen 
nucleus, then the Hamiltonian H and the operators 2 , zJ J  have a common set of eigenkets 

, ,E j m .  The spherically symmetric Hamiltonian is unchanged by rotation, so must commute 

with any rotation operator, [ ]2, 0 and , 0zH J H J⎡ ⎤ = =⎣ ⎦ . Recall that  commuting Hermitian 
operators can be diagonalized simultaneously—and therefore have a common set of eigenkets.  
 
Fortunately, many systems of interest do have spherical symmetry, at least to a good 
approximation, the basic example of course being the hydrogen atom, so the natural set of basis 
states is the common eigenkets of energy and angular momentum.  It turns out that even when 
the spherical symmetry is broken, the angular momentum eigenkets may still be a useful starting 
point, with the symmetry breaking treated using perturbation theory.  

Two-Dimensional Models 
As a warm-up exercise for the complications of the three-dimensional spherically symmetric 
model, it is worth analyzing a two-dimensional circularly symmetric model, that is,  
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(In this section, we’ll denote the particle mass by M, to avoid confusion with the angular 
momentum quantum number m – but be warned you are often going to find m used for both in 
the same discussion!) 
 
The two-dimensional angular momentum operator is 
 

.y xL r p xp yp i x y
y x

⎛ ⎞∂ ∂
= × = − = − −⎜ ⎟∂ ∂⎝ ⎠

 

 
It is a straightforward exercise to check that for the circularly-symmetric Hamiltonian above,  
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[ ], 0H L .=  

 
Exercise: check this. 
 
To take advantage of the circular symmetry, we switch to circular variables ( ),r ,φ where 
  

( )2 2 1, tan / ,  so cos , sin .r x y y x x r y rφ φ φ−= + = = =  
 
Transforming the Hamiltonian and angular momentum into ( ),r φ coordinates, 
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and 
 

.L i
φ
∂

= −
∂

 

Exercise: check these results! 
 
The angular momentum eigenfunctions ( ),m rψ φ  satisfy 
  

( ) ( ) ( ), ,m mL r i r m r,mψ φ ψ φ ψ
φ

φ∂
= − =

∂
 

 
equivalent to L m m m=  .  So ( ), ( ) im

m r R r e φψ φ = , and for this to be a single-valued wave 
function, m must be an integer.  (This also ensures the hermiticity of the operator—the 
integration-by-parts check has canceling contributions from 0φ = and 2 .φ π= ) 
 
Notice this means that any function of r multiplied by ime φ  is an eigenfunction of angular 
momentum with eigenvalue m , and in fact any eigenfunction of L with eigenvalue  must be 
of this form.  So we can factor out the r-dependence, and write a complete set of orthonormal 
eigenfunctions of L, normalized by integrating around the circle: 

m

 

( ) 1 ,  an integer.
2

im
m e φφ φ

π
Φ =  

 
It is interesting to note that this would be a complete set of wave functions for a particle confined 
to a ring—rather like the original Bohr orbits.  In fact, nanotech rings in which electrons have 
wave functions like this can now be manufactured.  Note also that in such rings one can also 
have real wave functions 1/ sin , 1/ cosm mπ φ π φ , which are still energy eigenstates, but not 
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angular momentum eigenstates, since they are standing waves, linear superpositions of waves 
going around the ring in opposite directions.  
 
The common eigenstates of the Hamiltonian and the angular momentum evidently have the form 
 

( ) ( ) ( ), ,, ,E m E m mE m r R r .ψ φ φ= = Φ  
 
We should emphasize that although the angular part of the wave function does not depend on the 
radial potential, the radial component ( ),E mR r  does depend on the angular momentum m.  This 

becomes obvious on putting this ( ), ,E m rψ φ  into the ( ),r φ version of Schrödinger’s equation, 
  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

, , ,2 2 2
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2 E m m E m m E m mR r V r R r ER r

M r r r r
φ φ φ

φ
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− + + Φ + Φ = Φ⎜ ⎟∂ ∂ ∂⎝ ⎠
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noting that  , and canceling out the common factor 2 2/ mφ∂ ∂ ≡ − 2 ( )m φΦ  to give 
 

( ) ( ) ( ) ( )
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2 E m E m E m

d d m
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 In this one-dimensional equation for the radial wave function ( ),E mR r , the angular momentum 

term  evidently is equivalent to a repulsive potential.  It’s called the 
“centrifugal barrier” and is easy to understand from classical mechanics.  To see this, consider a 
classical particle bound (in two dimensions) by an attractive central force V(r).  Split the 
momentum into a radial component pr and a component in the direction perpendicular to the 
radius, 

2 2 2 2 2/ 2 / 2m Mr L Mr=

.p⊥  The angular momentum L rp⊥= and is constant (since the force is central).  The 
energy 
 

( ) ( )
2 2 2 2

22 2 2 2
r rp p p LE V r

M M M Mr
⊥= + + = + +V r  

 
substituting /p L r⊥ = . Since , the angular part is exactly equivalent to the above 
Schrödinger equation. 

L m=

 
But what about the radial part?  Why isn’t just equal to /rp i r− ∂ ∂ , and equal to 2

rp 2 2 2/ r∂ ∂ ?  
We know the more complicated differentiation with respect to r in the Schrödinger equation 
above must be correct, because it came from 2 2 2/ / 2x y∂ ∂ + ∂ ∂  and 2 2 ,r x y= +  

   ( )1tan / .y xφ −=
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To see why  equal to /rp i− ∂ ∂r  is incorrect,  even though it satisfies [ ], rr p i= , recall what 
happens in x-space. We argued there that  /xp i x= − ∂ ∂  for a plane wave because from the 
photon analogy, acting on the plane wave state  this operator gives the rate of change of 
phase and therefore the momentum.  But a radial wave is a little different: picture a photon wave 
coming out of a single narrow slit, that is, a slit having width far smaller than the photon 
wavelength.  The photon wave will radiate outwards with equal amplitude in all directions (180°) 
but the wave amplitude will decrease with distance from the slit to conserve probability.  For a 
long (narrow) slit, this is essentially a two-dimensional problem, so the wave function will be 

/xip xCe

( ) / /rip rr Ce rψ ≅ .  We know that if we measure the momentum of  photons at different 
distances from the slit we’ll get the same result.  The wavelength determines the photon’s 
momentum, and it isn’t changing.  The color stays the same.  However, /i r− ∂ ∂  operating on 
( )rψ  doesn’t just give pr: it picks up an extra term from differentiating the r , so it is 

obviously not giving us the right momentum.  Fortunately, this is easy to fix: we define the 
operator 
 

1ˆ
2rp i

r r
∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠

 

 
which eliminates the extra term, and still satisfies [ ], rr p i= .   
 
However, there is still a small problem. If we substitute this ˆ rp in the classical expression for the 
energy, following the procedure we used successfully to find Schrödinger’s equation in Cartesian 
coordinates, we find 
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This is almost—but not quite—the same as the equation we found by transforming from 
Cartesian coordinates.  The difference is the term 2 / 8Mr .  So which is right? Actually our 
first one was right—this second one, derived directly from the classical Hamiltonian, does give 
the same result in the classical limit, because the difference between them vanishes for .  
We conclude that beginning with the classical Hamiltonian, and replacing dynamical variables 
with the appropriate quantum operators, cannot guarantee that we get the correct quantum 
Hamiltonian: it might be off by some term of order .  This would become evident in predicting 

0→
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properties of truly quantum systems, such as atomic energy levels.  Problems of this kind are 
common in constructing quantum theories starting from a classical theory: essentially, in a 
classical theory, the order of variables in an expression is irrelevant, but in the quantum theory 
there can only be one correct order of noncommuting variables such as / r∂ ∂ and r in any 
expression.  
 
 
What can we say about the radial wave function ( ),E mR r ?  If both the energy and the potential at 

the origin are finite, then for small r ( ),  or m
E mR r Ar Ar m−≈ .  However, the wave function cannot 

be discontinuous, so ( ),
m

E mR r Ar≈ .  To make further progress in finding the wave function, we 
need to know the potential.  Specific examples will be analyzed in due course.  It is interesting to 
note that the allowed wave functions, proportional to , are the complex 

functions if the two-dimensional space is mapped into the complex plane. 
Representing many-electron wave functions in the plane in this way was a key to understanding 
the quantum Hall effect.  

, , 0m im m imr e r e mφ φ− >
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