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Einstein’s Solution of the Specific Heat Puzzle

The simple harmonic oscillator, a nonrelativistic particle in a potential L kx*, is an

excellent model for a wide range of systems in nature. In fact, not long after Planck’s
discovery that the black body radiation spectrum could be explained by assuming energy
to be exchanged in quanta, Einstein applied the same principle to the simple harmonic
oscillator, thereby solving a long-standing puzzle in solid state physics—the mysterious
drop in specific heat of all solids at low temperatures. Classical thermodynamics, a very
successful theory in many ways, predicted no such drop—with the standard equipartition
of energy, kT in each mode (potential plus kinetic), the specific heat should remain more
or less constant as the temperature was lowered (assuming no phase change).

To explain the anomalous low temperature behavior, Einstein assumed each atom to be an
independent (quantum) simple harmonic oscillator, and, just as for black body radiation,
he assumed the oscillators could only absorb or emit energy in quanta. Consequently, at
low enough temperatures there is rarely sufficient energy in the ambient thermal
excitations to excite the oscillators, and they freeze out, just as blue oscillators do in low
temperature black body radiation. Einstein’s picture was later somewhat refined—the
basic set of oscillators was taken to be standing sound wave oscillations in the solid rather
than individual atoms (making the picture even more like black body radiation in a cavity)
but the main conclusion—the drop off in specific heat at low temperatures—was not
affected.

The Classical Simple Harmonic Oscillator

The classical equation of motion for a one-dimensional simple harmonic oscillator with a
particle of mass m attached to a spring having spring constant & is

d*x
m——=-—
dt
The solution is
) k
x=x,sin(wt+9), w=,—,
m

and the momentum p = mv has time dependence
p =mx,ocos(wt+9).
The total energy

(1/2m)(p* +m’w’x’)=E
is clearly constant in time.



It is often useful to picture the time-development of a system in phase space, in this case a
two-dimensional plot with position on the x-axis, momentum on the y-axis. Actually, to

have (x, y)coordinates with the same dimensions, we use (max, p).

It is evident from the above expression for the total energy that in these variables the point

representing the system in phase space moves clockwise around a circle of radius /2mE
centered at the origin.

Note that in the classical problem we could choose any point (ma)x, p), place the system
there and it would then move in a circle about the origin. In the guantum problem, on the
other hand, we cannot specify the initial coordinates (mwx, p) precisely, because of the
uncertainly principle. The best we can do is to place the system initially in a small cell in
phase space, of size Ax-Ap =#/2. In fact, we shall find that in quantum mechanics phase
space is always divided into cells of essentially this size for each pair of variables.

Schrodinger’s Equation and the Ground State Wave Function

From the classical expression for total energy given above, the Schrédinger equation for
the quantum oscillator follows in standard fashion:

n dy(x) 1
R +Ema)2le//(x)=EW(x)

What will the solutions to this Schrodinger equation look like? Since the potential
I mw’x* increases without limit on going away from x = 0, it follows that no matter how

much kinetic energy the particle has, for sufficiently large x the potential energy
dominates, and the (bound state) wavefunction decays with increasing rapidity for further
increase in x. (Obviously, for a real physical oscillator there is a limit on the height of the
potential—we will assume that limit is much greater than the energies of interest in our
problem.)

We know that when a particle penetrates a barrier of constant height 7, (greater than the
particle’s kinetic energy) the wave function decreases exponentially into the barrier, as

e, where o = \/ 2m(V, — E)/h’ . But, in contrast to this constant height barrier, the

“height” of the simple harmonic oscillator potential continues to increase as the particle
penetrates to larger x. Obviously, in this situation the decay will be faster than
exponential. If we (rather naively) assume it is more or less locally exponential, but with a
local o varying with V), neglecting E relative to ¥, in the expression for & suggests that

a itself is proportional to x (since the potential is proportional to x*, and « oc NIz ) so

>
—(constant )x r)

maybe the wavefunction decays as e
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To check this idea, we insert y(x)=e" in the Schrédinger equation, using
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The y (x) is just a factor here, and it is never zero, so can be cancelled out. This leaves a

quadratic expression which must have the same coefficients of x”, x* on the two sides, that
is, the coefficient of x* on the left hand side must be zero:

n mao* h
T=——, S0 b=,|—.
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This fixes the wave function. Equating the constant terms fixes the energy:

2
= h 5 :lha).
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So the conjectured form for the wave function is in fact the exact solution for the lowest
energy state! (It’s the lowest state because it has no nodes.)

Also note that even in this ground state the energy is nonzero, just as it was for the square
well. The central part of the wave function must have some curvature to join together the
decreasing wave function on the left to that on the right. This “zero point energy” is
sufficient in one physical case to melt the lattice—helium is liquid even down to absolute
zero temperature (checked down to microkelvins!) because the wave function spread
destabilizes the solid lattice that will form with sufficient external pressure.

Higher Energy States

It is clear from the above discussion of the ground state that b =,|— is the natural unit
mao

of length in this problem, and %@ that of energy, so to investigate higher energy states we
reformulate in dimensionless variables,

Schrodinger’s equation becomes



de(Sg)_ 2
e =(&" =2 (9).

Deep in the barrier, the & term will become negligible, and just as for the ground state

wave function, higher bound state wave functions will have ¢ /> behavior, multiplied by
some more slowly varying factor (it turns out to be a polynomial).

Exercise: find the relative contributions to the second derivative from the two terms in

n_—x*/2

x"e”* 7. For given n, when do the contributions involving the first term become small?
Define “small”.

—£2/2

The standard approach to solving the general problem is to factor out the e term,

(&) =h(e "
giving a differential equation for 4(¢):

d’h
dé?

255—2+(2g—1)h:0

We try solving this with a power series in &:

WE)=hy+hE+hE = .

Inserting this in the differential equation, and requiring that the coefficient of each power
&" vanish identically, leads to a recurrence formula for the coefficients #,:

_(@ntl1-20),
" (m+)(n+2) "

Evidently, the series of odd powers and that of even powers are independent solutions to
Schrodinger’s equation. (Actually this isn’t surprising: the potential is even in x, so the
parity operator P commutes with the Hamiltonian. Therefore, unless states are degenerate
in energy, the wave functions will be even or odd in x.) For large n, the recurrence
relation simplifies to

2
h.,~=—h, n>e¢.
n
The series therefore tends to
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Multiply this by the e ? factor to recover the full wavefunction, we find y diverges for

2
large Eas e™ /7.

Actually we should have expected this—for a general value of the energy, the Schrédinger

equation has the solution ~ Ae*<'> + Be *'* at large distances, and only at certain
q g y

energies does the coefficient 4 vanish to give a normalizable bound state wavefunction.

So how do we find the nondiverging solutions? It is clear that the infinite power series
must be stopped! The key is in the recurrence relation.

If the energy satisfies

2& =2n+1, n an integer,

then h,., and all higher coefficients vanish.

This requirement in fact completely determines the polynomial (except for an overall
constant) because with 2& =2n+1 the coefficients 4,, for m < n are determined by

_@m+1-2¢) _@m+1-(2n+1))
" m+)m+2) " (m+Dm+2) "

This 7" order polynomial is called a Hermite polynomial and written H, (&). The
standard normalization of the Hermite polynomials H, (5) is to take the coefficient of the

highest power &£" to be 2" . The other coefficients then follow using the recurrence
relation above, giving:

Hy(&) =1, H\(&)=2¢, H,(§)=4 -2, Hy(§)=85" -12¢, ete.

So the bottom line is that the wavefunction for the n™ excited state, having energy
e=n+1,isy, (£)=CH, (f)eﬁfz/2 , where C, is a normalization constant to be

determined in the next section.

It can be shown (see exercises at the end of this lecture) that H,'(&)=2nH, (£). Using

this, beginning with the ground state, one can easily convince oneself that the successive
energy eigenstates each have one more node—the n™ state has n nodes. This is also



evident from numerical solution using the spreadsheet, watching how the wave function
behaves at large x as the energy is cranked up.

The spreadsheet can also be used to plot the wave function for large n, say n = 200. It is
instructive to compare the probability distribution with that for a classical pendulum, one
oscillating with fixed amplitude and observed many times at random intervals. For the
pendulum, the probability peaks at the end of the swing, where the pendulum is slowest
and therefore spends most time. The n =200 distribution amplitude follows this pattern,
but of course oscillates. However, in the large » limit these oscillations take place over
undetectably small intervals.

The classical pendulum when not at rest clearly has a time-dependent probability
distribution—it swings backwards and forwards. This means it cannot be in an eigenstate
of the energy. In fact, the quantum state most like the classical is a coherent state built up
of neighboring energy eigenstates. We shall discuss coherent states later in the course.

Operator Approach to the Simple Harmonic Oscillator
Having scaled the position coordinate x to the dimensionless & by & =x/b = x/mw/ 1,
let us also scale the momentum fromp to 7 =—id/d& (so #=bp/h=p/hmo).

The Hamiltonian is

P rmes o

2m

Dirac had the brilliant idea of factorizing this expression: the obvious thought
(§2 + 7z2) = (§ + iﬁ)(§ — i7z) isn’t quite right, because it fails to take account of the

noncommutativity of the operators, but the symmetrical version

H= h:) (5+l7r)(§—i7r)+(§—i7r)(§+i7r)]

is fine, and we shall soon see that it leads to a very easy way of finding the eigenvalues and
operator matrix elements for the oscillator, far simpler than using the wave functions we
found above. Interestingly, Dirac’s factorization here of a second-order differential
operator into a product of first-order operators is close to the idea that led to his most
famous achievement, the Dirac equation, the basis of the relativistic theory of electrons,
protons, etc.

To continue, we define new operators a, a’ by

E+irm

N

L g-im

5 T

a= (ma)x+ip), a (ma)x )



(We’ve expressed a in terms of the original variables x, p for later use.)

From the commutation relation [in,fj ] =1 it follows that

[a,a"]=1.

Therefore the Hamiltonian can be written:

H :ha)(afavt%j:ha)(NnL%j, where N =a'a.

Note that the operator N can only have non-negative eigenvalues, since

(WINly)=(wla'aly)=(y.ly.) = 0.

Now
[N.a'|=d'ad’ ~a'a'a=a'[a.a"]=d"
Suppose N has an eigenfunction |v) with eigenvalue v,
N|v)=v|v).
From the two equations above
Na'|[v) = a' Ny +a' [v) = (v +1)a |v)

so a'|v) is an eigenfunction of N with eigenvalue v +1. Operating with ¢ again and

again, we climb an infinite ladder of eigenstates equally spaced in energy.

a' is often termed a creation operator, since the quantum of energy % added each time
it operates is equivalent to an added photon in black body radiation (electromagnetic
oscillations in a cavity).

It is easy to check that the state a|v> is an eigenstate with eigenvalue v —1, provided it is

nonzero, so the operator a takes us down the ladder. However, this cannot go on
indefinitely—we have established that N cannot have negative eigenvalues. We must



eventually reach a state |v) for which a|v) =0, the operator a annihilates the state. (At

each step down, a annihilates one quantum of energy—so a is often called an annihilation
or destruction operator.)

Since the norm squared of a|v), |a|v>|2 =(v|a'a|v)=(v|N|v)=v(v|v), and since

<V|V> > 0 for any nonvanishing state, it must be that the lowest eigenstate (the

|v) for which a|v) =0) has v =0. It follows that the v ’s on the ladder are the positive
integers, so from this point on we relabel the eigenstates with 7 in place of v.

That is to say, we have proved that the only possible eigenvalues of N are zero and the
positive integers: 0, 1, 2, 3... . Nis called the number operator: it measures the number
of quanta of energy in the oscillator above the irreducible ground state energy (that is,
above the “zero-point energy” arising from the wave-like nature of the particle).

Since from above the Hamiltonian
P | 1
H= ha)(a’avt—j = ha)(NnL—j
2 2

H|n> z(n +§)ha)|n>

the energy eigenvalues are

It is important to appreciate that Dirac’s factorization trick and very little effort has given
us all the eigenvalues of the Hamiltonian

h 2 2
HZTa)(ﬂ' +¢& )

Contrast the work needed in this section with that in the standard Schrédinger approach.
We have also established that the lowest energy state |O> , having energy 1/, must

satisfy the first-order differential equation a| O> =0, that is,

(§+iﬁ)|0>:(§+di§jl//0(§):0'

The solution, unnormalized, is
Wy(£)=Ce ",



(In fact, we’ve seen this equation and its solution before: this was the condition for the
“least uncertain” wave function in the discussion of the Generalized Uncertainty Principle.)

1),

We denote the normalized set of eigenstates |0),[1),]2),...|n)... with (n|n)=1. Now

a'|n)=C,|n+1),and C, is easily found:

1C, [P =IC, [ (n+1|n+1)=(n|aa’|n) = (n+1),
and

a';"n>:\/m‘n+l>.

Therefore, if we take the set of orthonormal states |O> , 2> e | n> .. as the basis in the

1),

Hilbert space, the only nonzero matrix elements of a' are (n + 1| a' | n> =+/n+1. Thatis to

say,

N

—

0

0
V20
0 3

0
0
0

0
0

o O O O

(The column vectors in the space this matrix operates on have an infinite number of
elements: the lowest energy, the ground state component, is the entry at the top of the
infinite vector—so up the energy ladder is down the vector!)

The adjoint

So

a‘n>:\/;‘n—l>.

For practical computations, we need to find the matrix elements of the position and
momentum variables between the normalized eigenstates. Now

x=Vh/2ma)(aT+a), p=iNmoh/2 (aT—a)
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SO

0 1 0 0
oo 2 o0
| p=iNmen/2l o 2 0 3

0 0 3 0

x=~<h/2mw

o o &4 o
-os‘oﬁ‘
-&los‘o

These matrices are, of course, Hermitian (not forgetting the i factor in p).

To find the matrix elements between eigenstates of any product of x’s and p’s, express all
the x’s and p’s in terms of a’s and a'’s, to give a sum of products of a’s and a'’s. Each

product in this sum can be evaluated sequentially from the right, because each a or a' has
only one nonzero matrix element when the product operates on one eigenstate.

Normalizing the Eigenstates in x-space

The normalized ground state wave function is

1

¥ (5) = C€_§2/2 = (m_a)j e—mf0x2/2h,
7h

where we have gone back to the x variable, and normalized using I _w e “dx=rla.

To find the normalized wave functions for the higher states, they are first constructed
formally by applying the creation operator a' repeatedly on the ground state |0> Next,

the result is translated into x-space (actually & = x/b ) by writing @' as a differential

operator, acting on v, (5)

Using <n|a*|n—1>=\/;,

|n>=ﬁ|n—l>== N |0>

Now
a' =(UN2)(&in) =(1N2)(&~d / dg),

SO
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We need to check that this expression is indeed the same as the Hermite polynomial wave
function derived earlier, and to do that we need some further properties of the Hermite
polynomials.

Some Properties of Hermite Polynomials
The mathematicians define the Hermite polynomials by:
d 6_52

ds"

H,(&)=(-)"e"
SO

Hy(§)=1, H(§) =28, H,(§) =45 -2, H()=85"-12¢, etc.
It follows immediately from the definition that the coefficient of the leading power is 2".

It is a straightforward exercise to check that H, is a solution of the differential equation

d’ d
{d.fz —2§d—§+2nan(§) =0,

so these are indeed the same polynomials we found by the series solution of Schrodinger’s
equation earlier (recall the equation for the polynomial component of the wave function
was

d’h
dé’

253—Z+(25—1)h=0,

with 26 =2n+1.)

We have found y, (&) in the form

(1, d ) (me) s
W”(é)‘\/a[ﬁ(é dggD (ﬁhj e’

We shall now prove that the polynomial component is exactly equivalent to the Hermite
polynomial as defined at the beginning of this section.

We begin with the operator identity:
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Both sides of this expression are to be regarded as operators, that is, it is assumed that
both are operating on some function f(¢).

Now take the n™ power of both sides: on the right, we find, for example,

3
2 d _ g2 3 2 d _ g2 2 d _ g2 2 d _ 2
(_ef /2 ot /2j :(_) o2 4 e 8 o528 52

d& d& d&
2 d3 g2
:(_)365 /2 365/2
dg
since the intermediate exponential terms cancel against each other.

So:

_in:_ngz/zi -&%/2
[é déj T e

and substituting this into the expression for y, (§) above,

1 d" mo )"
_ A\ g 4 e || e =& /2
(&)= () [ e e

Q

This established the equivalence of the two approaches to Schrodinger’s equation for the
simple harmonic oscillator, and provides us with the overall normalization constants

without doing integrals. (The expression for y, (&) above satisfies I \w, | dx=1.)

Exercises:

n

_ 2
e to prove:

n 2 d
Use H =(-)e
8¢ n (é:) ( ) € dé:n
(a) the coefficient of &" is 2".
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(b) H,(&)=2nH,,(£)

(©) H,,(§)=2H,(£)-2nH,_, ()

@A) [ e H (£)dg=2"nNr

(Hint: rewrite as .[: H, (&)(-) j—;n e* dé& , then integrate by parts n times, and use (a).)
© [ e H, (&), (£)dé =0, form#n.

It’s worth doing these exercises to become more familiar with the Hermite polynomials,
but in evaluating matrix elements (and indeed in establishing some of these results) it is
almost always far simpler to work with the creation and annihilation operators.

Exercise: use the creation and annihilation operators to find <n | x* | n> . This matrix

element is useful in estimating the energy change arising on adding a small nonharmonic
potential energy term to a harmonic oscillator.

Time-Dependent Wave Functions

1),
solutions to the time-independent Schrodinger equation, or in ket notation eigenstates of
the Hamiltonian H | n> = (n + %)ha)| n> Putting in the time-dependence explicitly,

n,t> _ e—th/h |I’l,t _ 0> _ e—i(n+7)(ot
dealing with a state which is a superposition of states of different energies, such as

(1 / \/5) (|0)+[1)), which then becomes (1 / \/5) (e"’“’”2 |0) +e7 " |1>) Expectation values

of combinations of position and/or momentum operators in such states are best evaluated
by expressing everything in terms of annihilation and creation operators.

The set of normalized eigenstates |0),

2),...|n)... discussed above are of course

n> . It is necessary to include the time dependence when

Solving Schrodinger’s Equation in Momentum Space
In the lecture on Function Spaces, we established that the basis of |x> states (eigenstates
of the position operator) and that of |k> states (eigenstates of the momentum operator)

were both complete bases in Hilbert space (physicist’s definition) so we could work
equally well with either from a formal point of view. Why then do we almost always work
in x-space? Well, probably because we live in x-space, but there’s another reason. The
momentum operator in the x-space representation is p = —ifid / dx , so Schrodinger’s

equation, written (p2 /2m+ V(x))l//(x) =Ey (x) , with p in operator form, is a second-

order differential equation. Now consider what happens to Schrodinger’s equation if we
work in p-space. Since the operator identity [x, p] =1ih is true regardless of

representation, we must have x =ifid /dp . So for a particle in a potential V' (x), writing

Schrodinger’s equation in p-space we are confronted with the nasty looking operator
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V(ihd /dp)! This will produce a differential equation in general a lot harder to solve than

the standard x-space equation—so we stay in x-space.

But there are two potentials that can be handled in momentum space: first, for a linear
potential V’ (x) = —FXx , the momentum space analysis is actually easier—it’s just a first-

order equation. Second, for a particle in a quadratic potential—a simple harmonic
oscillator—the two approaches yield the same differential equation. That means that the
eigenfunctions in momentum space (scaled appropriately) must be identical to those in
position space—the simple harmonic eigenfunctions are their own Fourier transforms!



