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Introduction 
The Stern Gerlach experiment for the simplest possible atom, hydrogen in its ground state, 
demonstrated unambiguously that the component of the magnetic moment of the atom along the 
z-axis could only have two values.  It had been well established by this time that the magnetic 
moment vector was along the same axis as the angular momentum.  This is obviously true for the 
Bohr model of hydrogen, where the circulating electron is equivalent to a ring current, generating 
a magnetic dipole.  The problem is, though, that a magnetic moment generated in this way by 
orbital angular momentum will have a minimum of  three possible values of its z-component: the 
lowest nonzero orbital angular momentum is 1,l =  with allowed values of the z-component 

   , 1,0,m m = −= 1.
 
Recall, however, that in our derivation of allowed angular momentum eigenvalues from very 
general properties of rotation operators, we found that although for any system the allowed 
values of m form a ladder with spacing  we could not rule out half-integral m values.  The 
lowest such case,  would in fact have just two allowed m values:   
However, this cannot be any kind of orbital angular momentum because the z-component of the 
orbital wave function 

,=
1/ 2,l = 1/ 2, 1/ 2.m = −

ψ  has a factor ,ie ϕ±  and therefore picks up a factor -1 on rotating through 
2 ,π  meaning ψ  is not single-valued, which doesn’t make sense for a Schrödinger wave 
function.   
 
Yet the experimental result is clear.  Therefore, this must be a new kind of non-orbital angular 
momentum.  It is called “spin”, the simple picture being that just as the Earth has orbital angular 
momentum in its yearly circle around the sun, and also spin angular momentum from its daily 
turning, the electron has an  analogous spin.  But the analogy has obvious limitations: the Earth’s 
spin is after all made up of material orbiting around the axis through the poles, the electron’s spin 
cannot similarly be imagined as arising from a rotating body, since orbital angular momenta 
always come in integral multiples of  .=
 
Fortunately, this lack of a simple quasi-mechanical picture underlying electron spin doesn’t 
prevent us from using the general angular momentum machinery previously developed, which 
followed just from analyzing the effect of spatial rotation on a quantum mechanical system.  
Recall this led to the spacing = of the ladder of eigenvalues, and to values of the matrix elements 
of angular momentum components Ji  between the eigenkets , :j m  enough information to 
construct matrix representations of the rotation operators for a system of given angular 
momentum.  As an example, for the orbital angular momentum 1j l= =  state, we constructed 

the  matrix representation of an arbitrary rotation operator 3 3×
i J

e
θ ⋅

−
G G

=  in the space with 
orthonormal basis 1,1 , 1,0 1−, 1,   (in the ,l m  notation).  The spin 1/ 2j s= =  case can be 
handled in exactly the same way. 

http://galileo.phys.virginia.edu/classes/252/Angular_Momentum/Angular_Momentum.html
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Spinors, Spin Operators, Pauli Matrices 
The Hilbert space of angular momentum states for spin one-half is two dimensional.  Various 
notations are used: ,  becomes ,  or , s ,j m s m s m  or even, more graphically, 
 

1 1 1 1
2 2 2 2, , , .≡ ↑ − ≡ ↓  

 
Any state of the spin can be written 
 

2 2 with 1
α

α β α β
β
⎛ ⎞

↑ + ↓ ≡ + =⎜ ⎟
⎝ ⎠

 

 
and this two-dimensional ket is called a spinor.    
 
Operators on spinors are necessarily 2 2×  matrices.  We shall follow the usual practice of 
denoting the angular momentum components Ji  by  Si for spins. 
 
From our definition of the spinor,  

1
2

1 0
,  with .

0 1z z zS σ σ
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
=  

 
The general formulas for raising and lowering operators 
 

( ) ( ) ( ) ( ), 1 1 , 1 , , 1 1 ,J j m j j m m j m J j m j j m m j m+ −= + − + + = + − − −= = 1  
 
become for 1

2 ,j m= = 1
2  simply 

 
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2, , , , ,S S+ −− = = −= =  

 
so  

0 1 0 0
, .

0 0 1 0x y x yS iS S S iS S+ −

⎛ ⎞ ⎛ ⎞
+ = = − = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =  

 
It follows immediately that an appropriate matrix representation for spin one-half is 
 

1
2

0 1 0 1 0
,  where , , .

1 0 0 0 1
i

S
i

σ σ
⎛ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

G G G=
⎞

 

 
These three  matrices representing the (x, y, z) spin components are called the Pauli spin 
matrices.  They are hermitian, traceless, and obey 

2 2×
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( ) (2 , ,  and  for , ,  a cyclic permutation of 1,2,3 .i i j j i i j kI i i j kσ σ σ σ σ σ σ σ= = − = )  This can be 
written .i j ijk kiσ σ ε σ=   
 
The total spin 2 2 2 231

4 4 .S σ= =
G G= =  

 
Any  matrix can be written in the form 2 2×
 

0 .i i
i

Iα α σ+∑  

 
Exercise:  prove the above statements, then use your results to show that 
 

(a)   ( )  
2ˆ ˆ  for any unit vector n Iσ⋅ =

G G Gn

)G
 
(b)   ( )  ( ) ( ) ( .A B A B I A Bσ σ σ⋅ ⋅ = ⋅ + ⋅ ×

G G GG GG G G

Relating the Spinor to the Spin Direction 
But how do ,α β  in α β↑ + ↓  relate to which way the spin’s pointing?   To find out, let’s 

assume that it’s pointing up along the unit vector ( )ˆ sin cos , sin sin , cos ,n θ ϕ θ ϕ θ=
G  that is, in 

the direction ( ), .θ ϕ    In other words, it’s in the eigenstate of the operator n̂ σ⋅G G  having 
eigenvalue unity: 
 

.z x y

x y z

n n in
n in n

α α
β β

−⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟+ − ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
Evaluating, ( ) ( )/ / 1 sin / 1 cosi

zn n e ϕα β θ−
−= − = − θ , using elementary trigonometric identities 

 
( )
( )

/ 2

/ 2

cos / 2
sin / 2

i

i

e
e

ϕ

ϕ

α θ
β θ

−⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
where we have multiplied by an overall phase factor  to make it look nicer.  Note that the 
spinor is also correctly normalized. 

/ 2 ,ie ϕ

 
The physically significant parameter for spin direction is just the ratio / .α β   Note that any 
complex number can be represented as ( )cot / 2ie ϕ θ− , with 0 , 0 2 ,θ π ϕ π≤ < ≤ <  so for any 
possible spinor, there’s a direction along which the spin points up with probability one. 
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The Spin Rotation Operator 
The rotation operator for rotation through an angleθ  about an axis in the direction of the unit 
vector (ˆ , , )x y zn n n n=

G  is, using 1
2 ,J S σ= =

GG G=  
 

( )( )
ˆ

ˆ/ 2 .
i n J

i ne e
θ

θ σ
⋅

− − ⋅
=

GG
G G

=  
 

(Warning: we’re following standard notation here, but don’t confuse this θ --angle turned 
through—with the θ  in writing  in terms of n̂G ( ), !θ ϕ ) 
 
Expanding the exponential, 
 

( )( ) ( ) ( ) ( )
2 3

2 3ˆ/ 2 1 1ˆ ˆ ˆ
2 2! 2 3! 2

i n i i ie I n n nθ σ θ θ θσ σ− ⋅ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

G G G G G G G G …σ  

 

and using ( )  
2ˆ ,n Iσ⋅ =

G G

 
( )( )

( ) ( )

( )

2 4
ˆ/ 2

3

1 1
2! 2 4! 2

1ˆ ˆ
2 3! 2

ˆcos sin .
2 2

i n i ie I

i in n

I i n

θ σ θ θ

θ θσ σ

θ θσ

− ⋅ − −⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞+ ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − ⋅

G G

…

G G G G …

G G

+  

 
Writing this in the same D-notation we used for orbital angular momentum earlier (the 
superscript refers to the j-value) 
 

( ) ( )( ) ( )( ) ( )
ˆ

ˆ/ 21/ 2 ˆ ˆcos sin .
2 2

i n J
i nD R n e e I i n

θ
θ σ θ θθ σ

⋅
− − ⋅

= = = − ⋅

GG
G G

=G G G  

 
The rotation operator ( ) ( )( )1/ 2 ˆD R nθ G is a 2 2×  matrix operating on the ket space  

 
2 2, 1

α
α β

β
⎛ ⎞ .+ =⎜ ⎟
⎝ ⎠

 

 
Explicitly, it is  
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( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1/ 2
cos / 2 sin / 2 sin / 2

ˆ .
sin / 2 cos / 2 sin / 2

z x y

x y z

in in n
D R n

in n in

θ θ θ
θ

θ θ θ

⎛ ⎞− − +
⎜ ⎟=
⎜ ⎟− + +⎝ ⎠

G  

 
 
Notice that this matrix has the form 

* *

a b
b a

⎛ ⎞
⎜ ⎟−⎝ ⎠

 

 
with 

2 2 1.a b+ =  
 
The inverse of this rotation operator is clearly given by replacing θ  with ,θ−  that is,  
 

1 *

* * *
.

a b a b
b a b a

−
⎛ ⎞−⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
 

 
These  matrices have determinant 2 2× 2 2 1,a b+ =  and so are unitary.  They clearly form a 
group, since they represent operations of rotation on a spin.  This group is called SU(2), the 2 
refers to the dimensionality, the U to their being unitary, and the S signifying determinant +1. 
 
Note that for rotation about the z-axis,  ( )ˆ 0,0,1 ,n =

G it is more natural to replace  with θ ϕ  and the 
rotation operator becomes 
 

( ) ( )( )
/ 2

1/ 2
/ 2

0ˆ .
0

i

i

e
D R z

e

ϕ

ϕ
ϕ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

G  

 
In particular, the wave function is multiplied by -1 for a rotation of 2 .π   Since this is true for any 
initial wave function, it is clearly also true for rotation through 2π about any axis. 
 

Exercise: write down the infinitesimal version of the rotation operator 
ˆi n J

e
δθ ⋅

−
GG

=  for spin ½ , and 

prove that 
ˆ ˆ

ˆ ,
i n J i n J

e e n
δθ δθ

σ σ δθ σ
⋅ ⋅

−
= + ×

G GG G

= =G G G G  that is, σG  is rotated in the same way as an ordinary 
three-vector—note particularly that the change depends on the angle rotated through, as opposed 
to the half-angle, so, reassuringly, there is no -1 for a complete rotation (as there cannot be—the 
direction of the spin is a physical observable, and cannot be changed on rotating the measuring 
frame through 2π ).  
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Spin Precession in a Magnetic Field 
As a warm up exercise, consider a magnetized classical object spinning about its center of mass, 
with angular momentum L

G
 and parallel magnetic moment , Lμ μ γ=

GG G .  The constant γ  is called 
the gyromagnetic ratio.  Now add a magnetic field B

G
, say in the z-direction. This will exert a 

torque , easily solved to find the angular momentum vector /T B L B dL dtμ γ= × = × =
G G G G GG L

G
 

precessing about the magnetic field direction with angular velocity of precession 0 Bω γ= −
GG .  

 
(Proof: from , take  Of course, 

dLz/dt = 0, since  is perpendicular to 

/dL dt L Bγ= ×
G G G

.+G
0, / , i Bt

x yL L iL dL dt i BL L L e γγ −
+ + + += + = − =

/dL dt L Bγ= ×
G G

B
G

, which is in the z-direction.) 
 
The exact same result comes from the quantum mechanics of an electron spin in a magnetic 
field.  The electron has magnetic dipole moment Sμ γ=

GG , where ( )/ 2g e mcγ = −  and g (known 
as the Landé g-factor) is very close to 2.  (This g-factor terminology is used more widely: the 
magnetic moment of an atom is written ,  where / 2B Bg e mcμ μ μ= = = is the Bohr magneton, and 
g depends on the total orbital angular momentum and total spin of the particular atom.) 
 
The Hamiltonian for the interaction of the electron’s dipole moment with the magnetic field is 
H B Sμ γ= − ⋅ = − ⋅

GG GG B , hence the time development is 
 

( ) ( ) ( )0t U tψ ψ=  
with the propagator 

( ) / /iHt i BtU t e e γσ− ⋅= = 2
GG=  

 
but this is exactly the rotation operator (as shown earlier) through an angle  Btγ−  about B

G
! 

 
For an arbitrary initial spin orientation 
 

( )
( )

/ 2

/ 2

cos / 2
,

sin / 2

i

i

e
e

ϕ

ϕ

α θ
β θ

−⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
the propagator for a magnetic field in the z-direction  
 

( )
0

0

/ 2
/ 2

/ 2

0
,

0

i t
i Bt

i t

e
U t e

e

ω
γσ

ω

−
⋅ ⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

GG
 

so the time-dependent spinor is 
 

( )
( )

( ) ( )
( ) ( )

0

0

/ 2

/ 2

cos / 2
.

sin / 2

i t

i t

et
t e

ϕ ω

ϕ ω

θα
β θ

− +

+

⎛ ⎞⎛ ⎞
⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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The angle θ  between the spin and the field stays constant, the azimuthal angle around the field 
increases as 0 0 ,tϕ ϕ ω= +  exactly as in the classical case. 
 
Exercise: for a spin initially pointing along the x-axis, prove that ( ) ( ) 0/ 2 cos .xS t tω= =  

Paramagnetic Resonance 
We have shown that the spin precession frequency is independent of the angle of the spin to the 
field.  Consider how all this looks in a frame of reference which is itself rotating with angular 
velocity ω  about the z-axis. Let’s call the magnetic field 0 0

ˆB B z=
G G , because we’ll soon be adding 

another one.   
 
In the rotating frame, the observed precession frequency is ( )0 /r Bω γ ω= − + γ

GG G , so there is a 

different effective field 0 /B ω γ+
G G  in the rotating frame. Obviously, if the frame rotates exactly at 

the precession frequency, 0 ,B0ω ω γ= = −
GG G  spins pointing in any direction will remain at rest in 

that frame—there’s no effective field at all. 
 
Suppose now we add a small rotating magnetic field with angular frequency ω  in the x,y plane, 
so the total magnetic field 
 

( )0 1
ˆ ˆˆ cos sin .B B z B x t y tω ω= + −

G G GG  

 
The effective magnetic field in the frame rotating with the same frequency ω  as the small added 
field is 
 

( )0 1
ˆˆ/ .rB B zω γ= + + B x

G GG  
 
Now, if we tune the angular frequency of the small rotating field so that it exactly matches the 
precession frequency in the original static magnetic field, 0 ,B0ω ω γ= = −

GG G  all the magnetic 
moment will see in the rotating frame is the small field in the x-direction!  It will therefore 
precess about the x-direction at the slow angular speed 1.Bγ   This matching of the small field 
rotation frequency with the large field spin precession frequency is the “resonance”. 
 
If the spins are lined up preferentially in the z-direction by the static field, and the small resonant 
oscillating field is switched on for a time such that 1 / 2,B tγ π=  the spins will be preferentially in 
the y-direction in the rotating frame, so in the lab they will be rotating in the x,y plane, and a coil 
will pick up an ac signal from the induced emf.  
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