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Pure States and Mixed States 
Our treatment here more or less follows that of Sakurai, beginning with two imagined Stern-
Gerlach experiments.  In that experiment, a stream of (non-ionized) silver atoms from an oven is 
directed through an inhomogeneous vertical magnetic field, and the stream splits into two.  The 
silver atoms have nonzero magnetic moments, and a magnetic moment in an inhomogeneous 
magnetic field experiences a nonzero force, causing the atom to veer from its straight line path,  
the magnitude of the deflection being proportional to the component of the atom’s magnetic 
moment in the vertical (field) direction.   The observation of the beam splitting into two, and no 
more, means that the vertical component of the magnetic moment, and therefore the associated 
angular momentum, can only have two different values.  From the basic analysis of rotation 
operators and the properties of angular momentum that follow, this observation forces us to the 
conclusion that the total angular momentum of a silver atom is 1

2 .  Ordinary orbital angular 
momenta cannot have half-integer values; this experiment was one of the first indications that the 
electron has a spin degree of freedom, an angular momentum that cannot be interpreted as orbital 
angular momentum of constituent parts.  The silver atom has 47 electrons, 46 of them have total 
spin and orbital momenta that separately cancel, the 47th has no orbital angular momentum, and 
its spin is the entire angular momentum of the atom.  
 
Here we shall use the Stern-Gerlach stream as an example of a large collection of quantum 
systems (the atoms) to clarify just how to describe such a collection, often called an ensemble. 
To avoid unnecessary complications, we only consider the spin degrees of freedom.  We begin 
by examining two different streams:  
 
Suppose experimentalist A prepares a stream of silver atoms such that each atom is in the spin 
state Aψ :  
  

( )1
2Aψ = ↑ + ↓ . 

 
Meanwhile, experimentalist B prepares a stream of silver atoms which is a mixture: half the 
atoms are in state ↑  and half are in the  state ↓ : call this mix B.   
 
Question: can we distinguish the A stream from the B stream?  
 
Evidently, not by measuring the spin in the z-direction!  Both will give up 50% of the time, down 
50%.   
 
But: we can distinguish them by measuring the spin in the x-direction: the Aψ  quantum state is 
in fact just that of a spin in the x-direction, so it will give “up” in the x-direction every time—
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from now on we call it x↑ , whereas the state ↑  (“up” in the z-direction) will yield “up” in the 

x-direction only 50% of the time, as will ↓ . 
 
The state A xψ = ↑  is called a pure state, it’s the kind of quantum state we’ve been studying this 
whole course.  
 
The stream B,  in contrast, is in a mixed state: the kind that actually occurs to a greater or lesser 
extent in a real life stream of atoms, different pure quantum states occurring with different 
probabilities, but with no phase coherence between them.  In other words, these relative 
probabilities in B of different quantum states do not derive from probability amplitudes, as they 
do in finding the probability of spin up in stream A: the probabilities of the different quantum 
states in the mixed state B are exactly like classical probabilities.   
 
That being said, though, to find the probability of measuring spin up in some such mixed state, 
one first uses the classical-type probability for each component state, then for each quantum state 
in the mix, one finds the probability of spin up in that state by the standard quantum technique.  
 
Theerefore, for a mixed state in which the system is in state iψ  with probability wi,  1,iw =∑  

the expectation value of an operator Â  is  
 

ˆ ˆ
i i iA w Aψ ψ=∑  

 
and we should emphasize that these iψ  do not need to be orthogonal (but they are of course 

normalized): for example one could be x↑ , another z↑ . (We put the usually omitted z in for 

emphasis.)  The reason we put a hat on Â  here is to emphasize that this is an operator, but the wi 
are just numbers. 

The Density Matrix 
The equation for the expectation value Â  can be written: 

 

( )ˆ ˆˆ ˆTrace   where  .i i iA A wρ ρ ψ= = ψ∑  

 
To see exactly how this comes about, recall that for an operator B̂  in a finite-dimensional vector 

space with an orthonormal basis set j ,  
1

ˆ ˆTr
n

jj
j

B j B j B
=

=∑ = , where the repeated suffix 

implies summation of the diagonal matrix elements of the operator.    
 
Therefore,  
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since j j I=∑ , the identity. 
 
This ρ̂  is called the density matrix: its matrix form is made explicit by considering states iψ   
in a finite N-dimensional vector space (such as spins or angular momenta)  
 
 ( )i i j

j
V jψ =∑  

 
where the j  are an orthonormal basis set, and ( )i j

V is the jth component of a normalized vector 

Vi.   It is convenient to express ρ̂  in terms of kets and bras belonging to this orthonormal basis, 
 

( ) ( )†

, , ,

ˆ i i i i i i jkj k
i j k j k

w w V V j kρ ψ ψ ρ= = =∑ ∑ ∑ j k  

and evidently 
 

( )
, , , ,

ˆ ˆ ˆ ˆˆTrace .jk jk jk kj
n j k j k j k

A A n j k A n k A jρ ρ ρ ρ= = = =∑ ∑ A∑  

 
(Since jkρ  is just a number, jk jk jkn j n j njρ ρ ρ= = δ

)

.) 
 

( ˆˆTrace Aρ  is basis-independent, the trace of a matrix being unchanged by a unitary 

transformation, since it follows from TrABC = TrBCA that     
 

† †Tr Tr Tr   for 1U AU AUU A UU †= = = . 
 
Note that since the vectors Vi are normalized, ( ) ( )† 1,i ij j

j
V V =∑ with the i not summed over, and 

 it follows that 1,iw =∑
 

ˆTr 1ρ =  
 

(also evident by putting A = 1 in the equation for A ). 
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For a system in a pure quantum state ψ ,  ρ̂ ψ ψ= , just the projection operator into that 
state, and 
 

2ˆ ˆρ ρ= , 
 
as for all projection operators.   
 
It’s worth spelling out how this differs from the mixed state by looking at the form of the density 
matrix.   
 
For the pure state ψ , if a basis is chosen so that ψ  is a member of the basis (this can always 
be done), ρ̂  is a matrix with every element zero except the one diagonal element corresponding 
to ψ ψ , which will be unity.  Obviously, 2ˆ ˆρ ρ= .  This is less obvious in a general basis, 

where ρ̂  will not necessarily be diagonal.  But the statement 2ˆ ˆρ ρ=  remains true under a 
transformation to a new basis. 
 
For a mixed state, let’s say for example a mixture of orthogonal states 1 2,ψ ψ , if we choose a 
basis including both states, the density matrix will be diagonal with just two entries  Both 
these numbers must be less than unity, so 

1 2, .w w
2ˆ .ˆρ ρ≠   A mix of nonorthogonal states is left as an 

exercise for the reader. 
 

Some Simple Examples 
First, our case A above (pure state): all spins in state ( )( )1/ 2x↑ = ↑ + ↓ .   

 
In the standard ,↑ ↓  basis,  
  

( )1/ 2 1/ 2 1/ 2
ˆ 1/ 2 1/ 2

1/ 2 1/ 21/ 2
x xρ

⎛ ⎞ ⎛ ⎞
= ↑ ↑ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
and 

( )

( )

1/ 2 1/ 2 0 1
ˆTr Tr

1/ 2 1/ 2 1 02 2

1/ 2 1/ 2 1 0
ˆTr Tr 0.

1/ 2 1/ 2 0 12

x x

z z

s s

s s

ρ

ρ

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

=

 

Notice that 2ˆ ˆρ ρ= . 
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Now, case B (50-50 mixed up and down): 50% in the state ↑ ,  50% ↓ .   
 
The density matrix is 
 

( ) ( )

1 1ˆ
2 2

1 0 11 1 11 0 0 1 .
0 1 02 2 2

ρ = ↑ ↑ + ↓ ↓

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0
1

 

 
This is proportional to the unit matrix, so 
 

1ˆTr Tr 0,
2 2x xsρ σ= =  

 
and similarly for sy and sz, since the Pauli σ-matrices are all traceless.  Note also that 

2 1
2ˆ ˆ ˆρ ρ ρ= ≠ , as is true for all mixed states. 

 
Finally, a 50-50 mixed state relative to the x-axis: 
 
That is, 50% of the spins in the state  ( )( )1/ 2x↑ = ↑ + ↓ , “up” along the x-axis, and 50% 

in  ( )(1/ 2x↓ = ↑ − ↓ ) , “down” in the x-direction.  

 
It is easy to check that 
 

1/ 2 1/ 2 1/ 2 1/ 2 1 01 1 1 1 1ˆ .
1/ 2 1/ 2 1/ 2 1/ 2 0 12 2 2 2 2x x x xρ

−⎛ ⎞ ⎛ ⎞ ⎛
= ↑ ↑ + ↓ ↓ = + =⎜ ⎟ ⎜ ⎟ ⎜−⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎠

 

 
This is exactly the same density matrix we found for 50% in the state ↑ ,  50% ↓ !   
 
The reason is that both formulations describe a state about which we know nothing—we are in a 
state of total ignorance, the spins are completely random, all directions are equally likely.  The 
density matrix describing such a state cannot depend on the direction we choose for our axes.  
 
Another two-state quantum system that can be analyzed in the same way is the polarization state 
of a beam of light, the basis states being polarization in the x-direction and polarization in the y-
direction, for a beam traveling parallel to the z-axis. Ordinary unpolarized light corresponds to 
the random mixed state, with the same density matrix as in the last example above.  
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Time Evolution of the Density Matrix 
In the mixed state, the quantum states evolve independently according to Schrödinger’s equation, 
so 
 

[ ]ˆ ˆ, .i i i i i i
di w H w H H
dt
ρ ψ ψ ψ ψ= − =∑ ∑ ρ  

 
Note that this has the opposite sign from the evolution of a Heisenberg operator, not surprising 
since the density operator is made up of Schrödinger bras and kets.  
 
The equation is the quantum analogue of Liouville’s theorem in statistical mechanics.  
Liouville’s theorem describes the evolution in time of an ensemble of identical classical systems, 
such as many boxes each filled with the same amount of the same gas at the same temperature, 
but the positions and momenta of the individual atoms are randomly different in each.  Each box 
can be classically described by a single point in a huge dimensional space, a space having six 
dimensions for each atom (position and momentum, we ignore possible internal degrees of 
freedom).  The whole ensemble, then, is a gas of these points in this huge space, and the rate of 
change of local density of this gas, from Hamilton’s equations, is { }/ ,tρ ρ∂ ∂ = − H , the bracket 
now being a Poisson bracket (see Classical Mechanics).  Anyway, this is the classical precursor 
of, and the reason for the name of, the density matrix. 

Thermal Equilibrium 
A system in thermal equilibrium is represented in statistical mechanics by a canonical ensemble.  
If the eigenstate i  of the Hamiltonian has energy Ei, the relative probability of the system being 

in that state is /iE kT Ee e iβ− −= in the standard notation.  Therefore the density matrix is: 
 

1ˆ ,   i

H
E

i

ee i i
Z Z

β
βρ

−
−= =∑  

where  
 

Tr .iE H

i
Z e eβ β− −= =∑  

 
Notice that in this formulation, apart from the normalization constant Z, the density operator is 
analogous to the propagator  for an imaginary time ( ) /iHtU t e−= t i β= − .  Incidentally, for 
interacting quantum fields, the propagator can be constructed as a set of Feynman diagrams 
corresponding to all possible sequences of particle scatterings by interaction.  To find the 
thermodynamic properties of a field theory at finite temperature, essentially the same set of 
diagrams is used to find the free energy: the diagrams now describe the system propagating for a 
finite imaginary time, the same mathematical tools can be used.  
 
At zero temperature (β = ∞ ) the probability coefficients are all zero except for the 
ground state: the system is in a pure state, and the density matrix has every element zero except 
for a single element on the diagonal.  At infinite temperature, all the wi are equal: the density 

/iE
iw e Zβ−=
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matrix is just 1/N  times the unit matrix, where N is the total number of states available to the 
system.  In fact, the entropy of the system can be expressed in terms of the density matrix: 

( ˆ ˆTr lnS k )ρ ρ= − . This is not as bad as it looks: both operators are diagonal in the energy 
subspace.  
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