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The Interaction Representation 
Recall that in the first part of this course sequence, we discussed the Schrödinger and Heisenberg 
representations of quantum mechanics here.   In the Schrödinger representation, the operators are 
time-independent (except for explicitly time-dependent potentials) the kets representing the 
quantum states develop in time.  In the Heisenberg representation, the kets stay the same, the 
time dependence is in the operators.  These differing representations describe the same physics—
matrix elements of operators between kets must be the same in both.  The most natural to use 
depends on the problem at hand. In the classical limit, for example, the Heisenberg operators 
have the time dependence of the corresponding classical operators. 
 
In fact, for perturbation theory problems with a time-dependent potential, an intermediate 
representation, the interaction representation, is very convenient.  Using a subscript S to denote 
the Schrödinger representation,  
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we define the interaction representation by the unitary transformation 
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so the interaction representation kets and the Schrödinger representation kets coincide at t = 0, 
and if the interaction were zero, the interaction representation kets would be constant in time, 
like those in the Heisenberg representation.   
 
For nonzero ( )V t , then, the time development of the interaction representation kets is entirely 

due to ( )V t , and is easily found by differentiating both sides of the equation: 
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where we have introduced the interaction representation operator VI(t), defined by  
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Operators in this representation must have this time dependence relative to the Schrödinger 
operators to ensure that matrix elements, the only quantities of physical significance, are the 
same in the two representations.  That is to say, we must have 
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the two representations must predict the same probability amplitude for any transition. 
 
Integrating both sides of the differential equation, 
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This is not a solution—we’ve just gone from a differential equation to an integral equation.  This 
is only worth doing if VI is small, in which case the integral equation can be solved iteratively.  
 
The zeroth approximation is then 
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Putting this value into the small term on the right hand side of the integral equation gives the first 
order solution,  
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The second order solution is now given by putting the first order solution into the integral on the 
right:  
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This can be written: 
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The complete perturbation series is generated by repeating the iteration to all orders.  It can be 
expressed as a time-ordered product: 
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The T symbol means that on expanding out the exponential, the operators at different times are 
arranged in order of time, the latest on the left, without worrying about commutators.  If we just 
blindly expand the exponential, we will get, for example, a third-order term 
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The T operator tells us to rearrange the VI

 (t)’s in chronological order. Since there are three of 
them, they clearly appear in all possible orders before T operates, that is to say, there are 3! 
different ordered terms that T makes the same.  This just nicely cancels the 3! in the exponential 
expansion, to give us the expression we found by iteration. 
 
This time-ordered exponential is therefore the interaction representation propagator: 
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Going Back to the Schrödinger Representation 
It is instructive to recast this result in the Schrödinger representation (following Shankar).  First, 
note that putting the above equation for UI  together with the original definition of interaction 
representation kets 
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gives  
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So the Schrödinger representation propagator is related to the interaction representation 
propagator by: 
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Now let us see how to put our perturbation expansion for the propagator back from the 
interaction representation into the Schrödinger representation.  Instead of trying to handle the 



whole infinite series at once, we concentrate on the second-order term.  We will discover a 
pattern that works for all the higher order terms as well. 
 
So, transforming the operators in the second-order term of the interaction propagator back to the 
Schrödinger form, using 
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we find 
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Recall also that the Schrödinger propagator has the extra term  multiplying the interaction 
representation propagator.  Putting this in, and combining some of the exponentials, we find the 
second-order contribution to the Schrödinger propagator to be:  
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which can also be written: 
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To find the probability amplitude corresponding to this second-order process, we must sandwich 
it between initial and final states.  We take as our basis set the eigenstates of HS

 0. If we insert the 
unit operator  
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between the two VS’s,  the exponentiated HS

 0’s become simply numbers since they are now 
acting on eigenstates, and the expression becomes 
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The interpretation is now clear: the initial state 0i  evolves from t = 0  to t′′  under HS

 0, that is 

to say, only its phase changes in the standard fashion.  At t′′, the interaction VS(t′′ ) kicks it into 
another eigenstate 0n  of HS

 0, and only the phase changes until t′, when VS(t′ ) sends it to the 

final state f .  This process must be summed over all times t′, t′′  between t0  and t, and over 



all possible intermediate states.  
 
The nth order term has precisely the same structure, with VS  coming into play n times.  
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