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Introduction 
For two identical particles confined to a one-dimensional box, we established earlier that the 
normalized two-particle wavefunction ( )1 2,x xψ , which gives the probability of finding 
simultaneously one particle in an infinitesimal length dx1 at x1 and another in dx2 at x2  as 

( ) 2
1 2 1 2,x x dx dxψ , only makes sense if ( ) ( )2

1 2 2 1,
2

,x x xψ ψ= x , since we don’t know which of 
the two indistinguishable particles we are finding where.  It follows from this that there are two 
possible wave function symmetries:  ( ) ( )1 2 2 1, ,x x x xψ ψ=  or ( ) (1 2 2 1, ),x x x xψ ψ= − .  It turns 
out that if two identical particles have a symmetric wave function in some state, particles of that 
type always have symmetric wave functions, and are called bosons.  (If in some other state they 
had an antisymmetric wave function, then a linear superposition of those states would be neither 
symmetric nor antisymmetric, and so could not satisfy ( ) ( )2

1 2 2 1,
2

,x x xψ ψ= x

),

.)  Similarly, 
particles having antisymmetric wave functions are called fermions.  (Actually, we could in 
principle have ( ) (1 2 2 1, ix x e x xαψ ψ= , with α a constant phase, but then we wouldn’t get back 
to the original wave function on exchanging the particles twice.  Some two-dimensional theories 
used to describe the quantum Hall effect do in fact have excitations of this kind, called anyons, 
but all ordinary particles are bosons or fermions.)   
 
To construct wave functions for three or more fermions, we assume first that the fermions do not 
interact with each other, and are confined by a spin-independent potential, such as the Coulomb 
field of a nucleus.  The Hamiltonian will then be symmetric in the fermion variables,  
 

( ) ( ) ( )2 2 2
1 2 3 1 2 3/ 2 / 2 / 2H p m p m p m V r V r V r= + + + + + + +… … 

 
and the solutions of the Schrödinger equation are products of eigenfunctions of the single-
particle Hamiltonian ( )2 / 2H p m V r= +

,

.  However, these products, for example  

( ) ( ) ( )1 2 3a b cψ ψ ψ  do not have the required antisymmetry property.  Here a, b, c, … label the 
single-particle eigenstates, and 1, 2, 3, … denote both space and spin coordinates of single 
particles, so 1 stands for ( .  The necessary antisymmetrization for the particles 1, 2 is 
achieved by subtracting the same product wave function with the particles 1 and 2 interchanged, 
so 

)1 1,r s

( ) ( ) ( )1 2 3a b cψ ψ ψ is replaced by ( ) ( ) ( ) ( ) ( ) ( )1 2 3 2 1 3a b c a b cψ ψ ψ ψ ψ ψ− , ignoring overall 
normalization for now.   
 
But of course the wave function needs to be antisymmetrized with respect to all possible particle 
exchanges, so for 3 particles we must add together all 3! permutations of 1, 2, 3 in the state a, b, 
c, with a factor -1 for each particle exchange necessary to get to a particular ordering from the 
original ordering of 1 in a, 2 in b, and 3 in c.  In fact, such a sum over permutations is precisely 
the definition of the determinant, so, with the appropriate normalization factor: 
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( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1
11, 2,3 2 2 2
3! 3 3

a b c

abc a b c

a b c

ψ ψ ψ 1

3
ψ ψ ψ ψ

ψ ψ ψ
=  

 
where a, b, c label three (different) quantum states and 1, 2, 3 label the three fermions. The 
determinantal form makes clear the antisymmetry of the wave function with respect to 
exchanging any two of the particles, since exchanging two rows of a determinant multiplies it by 
-1.  
 
We also see from the determinantal form that the three states a, b, c must all be different, for 
otherwise two columns would be identical, and the determinant would be zero.  This is just 
Pauli’s Exclusion Principle: no two fermions can be in the same state.  Although these 
determinantal wave functions (sometimes called Slater determinants) are only strictly correct for 
noninteracting fermions, they are a useful beginning in describing electrons in atoms (or in a 
metal), with the electron-electron repulsion approximated by a single-particle potential.  For 
example, the Coulomb field in an atom, as seen by the outer electrons, is partially shielded by the 
inner electrons, and a suitable V(r) can be constructed self-consistently, by computing the single-
particle eigenstates and finding their associated charge densities. 

Space and Spin Wave Functions 
Suppose we have two electrons in some spin-independent potential V(r) (for example in an 
atom).  We know the two-electron wave function is antisymmetric.  Now, the Hamiltonian has 
no spin-dependence, so we must be able to construct a set of common eigenstates of the 
Hamiltonian, the total spin, and the z-component of the total spin.   
 
For two electrons, there are four basis states in the spin space.  The eigenstates of S and Sz are the 
singlet state 
 

( ) ( )( )1 2, 0, 0 1/ 2S tot zs s S Sχ = = = = ↑↓ − ↓↑  

 
and the triplet states  
 

( ) ( )( )1
1 2, 1,1 , 1,0 1/ 2 , 1, 1T s sχ = = ↑↑ = ↑↓ + ↓↑ − = ↓↓  

 
where the first arrow in the ket refers to the spin of particle 1, the second to particle 2.   
 
It is evident by inspection that the singlet spin wave function is antisymmetric in the two 
particles, the triplet symmetric.  The total wave function for the two electrons in a common 
eigenstate of S, Sz and the Hamiltonian H has the form: 
 

( ) ( ) ( )1 2 1 2 1 2 1 2, , , , ,r r s s r r s sψ χΨ =  
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and must be antisymmetric.  It follows that a pair of electrons in the singlet spin state must 
have a symmetric spatial wave function, 

Ψ
( ) ( )1 2 2 1,r r r r,ψ ψ= , whereas electrons in the triplet 

state, that is, with their spins parallel, have an antisymmetric spatial wave function.   

Dynamical Consequences of Symmetry 
This overall antisymmetry requirement actually determines the magnetic properties of atoms.  
The electron’s magnetic moment is aligned with its spin, and even though the spin variables do 
not appear in the Hamiltonian, the energy of the eigenstates depends on the relative spin 
orientation.  This arises from the electrostatic repulsion energy between the electrons.  In the 
spatially antisymmetric state, the two electrons have zero probability of being at the same place, 
and are on average further apart than in the spatially symmetric state.  Therefore, the electrostatic 
repulsion raises the energy of the spatially symmetric state above that of the spatially 
antisymmetric state.  It follows that the lower energy state has the spins pointing in the same 
direction.  This argument is still valid for more than two electrons, and leads to Hund’s rule for 
the magnetization of incompletely filled inner shells of electrons in transition metal atoms and 
rare earths: if the shell is half filled or less, all the spins point in the same direction.  This is the 
first step in understanding ferromagnetism. 
 
Another example of the importance of overall wave function antisymmetry for fermions is 
provided by the specific heat of hydrogen gas.  This turns out to be heavily dependent on 
whether the two protons (spin one-half) in the H2 molecule have their spins parallel or 
antiparallel, even though that alignment involves only a very tiny interaction energy.  If the 
proton spins are antiparallel, that is to say in the singlet state, the molecule is called 
parahydrogen.  The triplet state is called orthohydrogen.  These two distinct gases are remarkably 
stable—in the absence of magnetic impurities, para–ortho transitions take weeks.   
 
The actual energy of interaction of the proton spins is of course completely negligible in the 
specific heat.  The important contributions to the specific heat are the usual kinetic energy term, 
and the rotational energy of the molecule.  This is where the  overall (space×spin) antisymmetric 
wave function for the protons plays a role.  Recall that the parity of a state with rotational 
angular momentum l is (-1)l.  Therefore, parahydrogen, with an antisymmetric proton spin wave 
function, must have a symmetric proton space wave function, and so can only have even values 
of the rotational angular momentum.  Orthohydrogen can only have odd values.  The energy of 
the rotational level with angular momentum l is ( )rot 2 1 /lE l l= + I , so the two kinds of hydrogen 
gas have different sets of rotational energy levels, and consequently different specific heats.   

Symmetry of Three-Electron Wave Functions 
Things get trickier when we go to three electrons.  There are now 23 = 8 basis states in the spin 
space.  Four of these are accounted for by the spin 3/2 state with all spins pointing in the same 
direction.  This is evidently a symmetric state, so must be multiplied by an antisymmetric spatial 
wave function, a determinant.  But the other four states are two pairs of total spin ½ states.  They 
are orthogonal to the symmetric spin 3/2 state, so they can’t be symmetric, but they can’t be 
antisymmetric either, since in each such state two of the spins must be pointing in the same 
direction!   An example of such a state (following Baym, page 407) is 
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( ) ( )( )1 2 3 1 2 3 2 3, , 1/ 2 .s s sχ = ↑ ↑ ↓ − ↓ ↑  

 
Evidently, this must be multiplied by a spatial wave function symmetric in 2 and 3, but to get a 
total wave function with overall antisymmetry it is necessary to add more terms: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 2 3 1 2 3 1 3 1 2 3 1 21,2,3 , , , , , , , , , , , ,s s s r r r s s s r r r s s s r r rχ ψ χ ψ χ ψΨ = + +  
 
(from Baym).  Requiring the spatial wave function ( )1 2 3, ,r r rψ  to be symmetric in 2, 3  is 
sufficient to guarantee the overall antisymmetry of the total wave function Ψ.  Particle 
enthusiasts might be interested to note that functions exactly like this arise in constructing the 
spin/flavor wave function for the proton in the quark model (Griffiths, Introduction to 
Elementary Particles, page 179).  
 
For more than three electrons, similar considerations hold.  The mixed symmetries of the spatial 
wave functions and the spin wave functions which together make a totally antisymmetric wave 
function are quite complex, and are described by Young diagrams (or tableaux).  There is a 
simple introduction, including the generalization to SU(3), in Sakurai, section 6.5.  See also §63 
of Landau and Lifshitz.  

Scattering of Identical Particles 
As a preliminary exercise, consider the classical picture of scattering between two positively 
charged particles, for example α-particles, viewed in the center of mass frame.  If an outgoing a 
is detected at an angle θ to the path of ingoing a #1, it could be #1 deflected through q, or #2 
deflected through π - θ  (see figure).  Classically, we could tell which one it was by watching the 
collision as it happened, and keeping track.  
 

 
 
 
However, in a quantum mechanical scattering process, we cannot keep track of the particles 
unless we bombard them with photons having wavelength substantially less than the distance of 
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closest approach.  This is just like detecting an electron at a particular place when there are two 
electrons in a one dimensional box: the probability amplitude for finding an a coming out at 
angle θ to the ingoing direction of one of them is the sum of the amplitudes (not the sum of the 
probabilities!) for scattering through θ and π - θ.   
 
Writing the asymptotic scattering wave function in the standard form for scattering from a fixed 
target, 
 

( ) ( )
ikr

ikz er e f
r

ψ θ≈ +  

 
the two-particle wave function in the center of mass frame, in terms of the relative coordinate, is 
given by symmetrizing: 
 

( ) ( ) ( )( ) .
ikr

ikz ikz er e e f f
r

ψ θ π θ−≈ + + + −  

 
How does the particle symmetry affect the actual scattering rate at an angle θ?  If the particles 
were distinguishable, the differential cross section would be  
 

( ) ( )2 2

distinguishable

d f f
d
σ θ π θ⎛ ⎞ = + −⎜ ⎟Ω⎝ ⎠

 

 
but quantum mechanically 
 

( ) ( ) 2
.d f f

d
σ θ π θ⎛ ⎞ = + −⎜ ⎟Ω⎝ ⎠

 

 
This makes a big difference!  For example, for scattering through 90°, where ( ) ( )f fθ π θ= − , 

the quantum mechanical scattering rate is twice the classical (distinguishable) prediction.  

 

Furthermore, if we make the standard expansion of the scattering amplitude f(θ) in terms of 

partial waves,  

 

( ) ( ) ( )
0

2 1 cosl l
l

f l a Pθ θ
∞

=

= +∑  

then 
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( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( )
0

0

2 1 cos cos

2 1 cos cos

l l l
l

l l l
l

f f l a P P

l a P P

θ π θ θ π θ

θ θ

∞

=

∞

=

+ − = + + −

= + + −

∑

∑
 

 
and since the scattering only takes place in even partial wave states. This is 
the same thing as saying that the overall wave function of two identical bosons is symmetric, so 
if they are in an eigenstates of total angular momentum, from it has to be a 
state of even l.  

( ) ( ) (1 l
lP x P x− = − )l

)l( ) ( ) (1 l
lP x P x− = −

 
For fermions in an antisymmetric spin state, such as proton-proton scattering with the two proton 
spins forming a singlet, the spatial wave function is symmetric, and the argument is the same as 
for the boson case above.  For parallel spin protons, however, the spatial wave function has to be 
antisymmetric, and the scattering amplitude will then be ( ) ( ).f fθ π θ− −   In this case there is 
zero scattering at 90°! 
 
Note that for (nonrelativistic) equal mass particles, the scattering angle in the center of mass 
frame is twice the scattering angle in the fixed target (lab) frame.  This is easily seen in the 
diagram below.  The four equal-length black arrows, two in, two out, forming an X, are the 
center of mass momenta. The lab momenta are given by adding the (same length) blue dotted 
arrow to each, reducing one of the ingoing momenta to zero, and giving the (red arrow) lab 
momenta (slightly displaced for clarity).  The outgoing lab momenta are the diagonals of rhombi 
(equal-side parallelograms), hence at right angles and bisecting the center of mass angles of 
scattering.  
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