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Introduction: Looking for Superconductors and Finding Insulators 
In 1964, Little suggested (Phys. Rev 134, A1416) that it might be possible to synthesize a room 
temperature superconductor using organic materials in which the electrons traveled along certain 
kinds of chains, effectively confined to one dimension.   
 
The first satisfactory theory of “ordinary” superconductivity, that of Bardeen, Cooper and 
Schrieffer (BCS) had appeared a few years earlier, in 1957.  The key point was that electrons 
became bound together in opposite spin pairs, and at sufficiently low temperatures these bound 
pairs, being boson like, formed a coherent condensate—all the pairs had the same total 
momentum, so all traveled together, a supercurrent.  The locking of the electrons into this 
condensate effectively eliminated the usual single-electron scattering by impurities that degrades 
ordinary currents in conductors.   
 
But what could bind the electrostatically repelling electrons?  The answer turned out to be lattice 
distortions, as first suggested by Fröhlich in 1950.  An electron traveling through the crystal 
attracts the positive ions, the consequent excess of local positive charge attracts another electron.  
The strength of this binding, and hence the temperature at which the superconducting transition 
takes place, depends on the rapidity of the lattice response. This was confirmed by the isotope 
effect: lattice response time obviously depends on the inertia of the lattice, the BCS theory 
predicted that for a superconducting element with different isotopic varieties, the ratio of the 
superconducting transition temperatures for pure isotopes  was equal to 2 1/T T 1 2/M M , 

1, 2M M  being the ion masses, the lighter isotope having the higher transition temperature. This 
was indeed the case. 
 
Little’s idea was that the build up of positive charge by a passing electron could be speeded up 
dramatically if instead of having to move ions, it need only rearrange other electrons.  
Unfortunately, there were no obvious three-dimensional candidate materials.  However, if the 
conduction electrons moved along a one-dimensional chain, polarizable side chains might be 
attached, and rearrangement of the electronic charge distribution in these side chains would 
respond very rapidly to a passing conduction electron, building up a local positive charge.  If this 
worked, order of magnitude arguments suggested possible enhancement of the transition 
temperature by a factor /M m  over ordinary superconductors, m being the electron mass. 
 
In the 1970’s, various organic materials were synthesized and tested, beginning with one called 
TTF-TCNQ, in which a set of polymer-like long molecules donated electrons to another set, 
leaving one-dimensional conductors with partially filled bands (see later), seemingly good 
candidates for superconductivity.  Unfortunately, on cooling, these materials surprisingly became 
insulators rather than superconductors!  This was the first example of a Peierls transition, a 
widespread phenomenon in quasi one-dimensional systems. 
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The basic mechanism of the Peierls transition can be understood with a simple model.  It is a 
nice example of applied second-order perturbation theory, including the degenerate case.  We 
examine the model and the result below.   
 
It should be added that in some newer materials the Peierls transition is (unexpectedly) 
suppressed under high pressure, and superconductivity has in fact been observed in organic salts, 
but so far only at transition temperatures around one Kelvin: Little’s dream is not yet realized. 

Second-Order Perturbation Theory: a Periodic Potential in One Dimension 
To understand how a one-dimensional conductor might turn into an insulator at low 
temperatures, we must first become familiar with the simplest model of a one-dimensional 
conductor:  
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with  a gas of noninteracting electrons on a line, and V  periodic, that is, 0H ( ) ( ) ,V x a V x+ =   
the potential from a line of ions spaced a apart.  We’ll take the system to have N ions in a total 
length L,  so 

L = Na 
 

and to keep the math simple, we’ll require periodic boundary conditions. 
 

Total system length  L = Na  for N ions 

Neighboring ions distance a apart 

Ionic potential seen by electrons in one-dimensional system. 

 
The physics here is that without the potential, the electron eigenstates are plane waves.  The 
effect of the lattice potential is to partially reflect the waves, like a diffraction grating, generating 
components at different wavelengths.  This effect becomes particularly important when the 
electron wavelength matches twice the ion spacing.  For that case, the reflected and original 
waves have the same strength, the electron is at a standstill.  We’ll explore just how this happens 
later.  
 
The eigenstates of  are then 0H
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n being an integer.  The unperturbed energy eigenvalues, 
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We are following standard practice here.  We shall also write ( ) (  meaning n
k n

)f k f k∑ ∑ .  ) 

It’s worth plotting the (E, k) curve: 
 

E 

2 2 / 2E k= m  

/k aπ=  /k aπ= −  k 

Energy momentum (E, k) curve for a free electron in one dimension. 
 

 
Suppose we have ions with two electrons each to contribute to this one-dimensional (supposed) 
conductor.  Assuming they move into these plane wave states, in the system ground state they 
will fill up the lowest energy states up to a maximum k-value denoted by Fk±  (F stands for 
Fermi, this is the Fermi momentum.)  Where is it? 
 
We know there will be a total of 2N electrons.  We also know that the allowed values of k, from 
the boundary conditions, are 2 /nk n Lπ= , with n an integer. In other words, the allowed k’s are 
uniformly spaced 2 / Lπ apart, meaning they have a density of / 2L π  in k-space, so the total 
number between  is Fk± /FLk π .  The 2N electrons will have N of each spin, each k-state can 
take two electrons (one of each spin), so / /FLk N L aπ = = , and 
 

/ .Fk aπ=  
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To do perturbation theory, we must find the matrix elements of V(x) between eigenstates of H 0: 
 

(0)(0) ( ')1 ( ) .i k k xk V k e V x dx
L

−′ = ∫  

 
This is just the Fourier component k kV ′−  of V(x).   
 
If V(x) is periodic with period a, 
 

0 only if ,   an integer, 2 / .kV k nK n K aπ≠ = =  
 
In other words, if a function is periodic with spatial period a, the only nonzero Fourier 
components are those having the same spatial period a.  
 
Therefore  
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The n = 0 component of V(x) is of no interest—it is just a constant potential, and so can be taken 
to be zero.  Note that this eliminates the trivial first order correction (0)1 (0)

kE k V k=  to the 
energy eigenvalues.   
 
We shall consider only the components n = +1 and 1n = −  of V(x), it turns out that the other 
components can be treated in similar fashion.  For n = +1,  1n = − , the potential only has 
nonzero matrix elements between the plane wave state k and ,k K k K+ −  respectively.   
 
So, the second order correction to the energy is: 
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This result is reasonable provided the terms are small, that is, the energy differences appearing in 
the denominators are large compared to the relevant Fourier component VK.  However, this 
cannot always be true!  Notice that the state /k aπ=  has exactly the same unperturbed energy 
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0E as the state /k K aπ− = − :  in this case, nondegenerate perturbation theory is clearly wrong.  
In fact, even for states close to /k aπ= , the energy denominator 0 0

k k KE E −−  is small compared 

with the numerator 2
KV− , so the series is not converging. 

Quasi-Degenerate Perturbation Theory near the Critical Wavelength 
The good news is that, despite the many states near /k aπ=  and /k aπ= −  that are close 
together in energy, for any one state k near / aπ  the potential only has a nonzero matrix element 
to one other state close in energy, the state k K− , that is, 2 /k aπ− . The strategy now is to do 
what might be called quasidegenerate perturbation theory: to diagonalize the full Hamiltonian in 
the subspace spanned by these two states (0) (0),k k K− .  Other states with nonzero matrix 
elements to these states are relatively much further away in energy, and can be treated using 
ordinary perturbation theory. 
 
The matrix elements of the full Hamiltonian in the subspace spanned by these two states are: 
 

0 *
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K k K

E V
V E −

 

 
Diagonalizing within this subspace gives energy eigenvalues: 
 

20 0
0 01 ( ) |

2 2
k k K

k k K K
E EE E E V−

± −

⎛ ⎞−
= + ± +⎜ ⎟

⎝ ⎠
2| .  

 
Notice that, provided 0 0

k k K KE E V−− , to leading order this gives back  the 

order depending on k.  However, as k approaches 

0 0, ,k k KE E E± −=

/ aπ ,  0 0
k k KE E −−  becomes of order KV , and 

the energies deviate from the unperturbed values.  If k is approaching / aπ  from below, 
0 0
k k KE E −< , and the lower energy is pushed downwards by the perturbation: 0.k kE E E−= <   This 

is a common occurrence with almost degenerate states, perturbations cause the energy levels to 
“repel” each other. 
 

0 0
2 /For / ,  .k K k a kk a E E Eππ − −= = 0=

.
  At this value of k, the unperturbed states are exactly 

degenerate, and the perturbation lifts the degeneracy to give 0
/ | |a KE E Vπ± = ±  

 
In the graph below, the green (continuous) curve is the unperturbed energy as a function of k, the 
red curve (with the step) the calculated energy including the leading correction from the periodic 
potential.   
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Energy Gaps and Bands 
The energy jump, or gap, of 2|VK| at |k| = π/a  means that there are no plane wave type 
eigenstates with energies in that range—attempting to integrate Schrödinger’s equation in the 
periodic potential for such an energy gives exponentially growing and decaying solutions.  Such 
energy gaps in fact are present in real crystalline solids, the allowed energies are said to be in 
“bands”.  The lowest band for our model is from /  to / .k a aπ π= −   Since the allowed values of 
k are given by 2 /k n Lπ= , the spacing between adjacent k’s is 2 / Lπ  and the total number of 
k’s in the lowest band is L/a = N, the same as the number of atoms.  Since each electron has two 
spin states, this implies that a one-dimensional crystal of divalent atoms will just fill the lowest 
band with electrons.  Therefore, any outside field can only excite an electron to a different state 
if an energy of at least 2|VK| is supplied—for a small electric field, the filled band of electrons 
will remain in the ground state, there will be no current.  This material is an insulator.   
 
On the other hand, if monovalent atoms are used, it is clear that the lowest band is only half full, 
adjacent empty electron states are available.  The electrons are free to accelerate if an external 
field is applied.  Barring the unexpected, this one-dimensional crystal would be a metal.   
 
Let us now examine how the periodic potential alters the eigenstates.  Ignoring the small 
corrections from plane waves outside the (0) (0),k k K− subspace, the eigenstates to this order 
have the form 
 

(0) (0)
k k Kk a k a k K−= + −  
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from the diagonalization of the  matrix representing the Hamiltonian in the subspace. 2 2×



 7

 
As k increases from 0 towards / aπ , the plane wave initially proportional to eikx has a gradually 
increasing admixture of ( )2 /i k a xe π− , until at /k aπ=  the two have equal weight—meaning that 
the eigenfunction is now a standing wave.  In fact, there are two standing wave solutions at 

/k aπ= , corresponding to the energies below and above the gap. Taking the atoms to have an 
attractive potential, the lower energy wave has a probability distribution peaking at the atomic 
positions.  The diffractive scattering that gives a left-moving component to a right moving wave 
is known as Bragg scattering.  It also manifests itself in the group velocity of the electronic 
excitations,  An electron injected into a one-dimensional metal 
would not be a plane wave state, but a wavepacket traveling at the group velocity. It is evident 
that for an injected electron with mean value of k close to 

( )group / 1/ /v d dk dE dkω= = .

/ aπ , the electron will move very 
slowly into the metal.  This is to be expected—the eigenstates become standing waves as 

/ .k aπ→  
 
For three-dimensional crystals, the situation is far more complicated, but many of the same ideas 
are relevant.  Electron waves are now diffracted by whole planes of atoms, and the three-
dimensional momentum space is divided into Brillouin zones, with planes having an energy gap 
across them.  

The Peierls Transition: how Cooling a Conductor Can Give an Insulator 
As mentioned in the Introduction, substances very close to monovalent one-dimensional crystals 
have been synthesized, and it has been found—surprisingly—that at low temperatures many of 
them undergo a transition from metallic to insulating behavior.  What happens is that the atoms 
in the lattice rearrange slightly, moving from an equally-spaced crystal to one in which the 
spacing alternates, that is, the atoms form pairs. This is called dimerization, and costs some 
elastic energy, since for identical atoms the lowest state must be one of equal spacing for any 
reasonable potential.  However, the electrons are able to move to a lower energy state by this 
maneuver.  

Total system length  L = Na  (as before) for N ions 

System now has longer period: 2a 

Ionic potential seen by electrons in a dimerized one-dimensional system. 

 
Just how this happens can be understood using the perturbation theory analysis above.  For 
equally spaced atoms, the electrons half-fill the band, that is, they fill it up (two electrons, one of 
each spin, per state)  to / 2 .k aπ=     
 
The crucial point is that if the atoms move together slightly into pairs, the crystal has a new 
period 2a instead of a.  This means that the potential now has a nonzero component at 

/K aπ= − , with a nonzero matrix element between the states / 2k aπ=  and / 2k aπ= − , and so 
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on.  From this point, we can rerun the analysis above, except that now the gaps open up at 
/ 2k π= a  instead of at / .k aπ=   

 
The important point is that if the electrons fill all the states to / 2k π= a , and none beyond (as 

would be the case for monovalent atoms) then the opening of a gap at / 2k π= a means that all 
the electrons are in states whose energy is lowered.  To find the total energy benefit we need to 
integrate over k. 
 

Empty electron states 

 

Calculating the Electronic Energy Gained by Doubling the Lattice Period 
It is evident from the above that most of the contribution comes from fairly close to / 2k aπ=  
(and of course symmetrically / 2k aπ= − ).  Since we want to find the total lowering in energy, 
let us study first the bare energy as a function of k, that is, the energy with no potential present.  
Of course, there isn’t much to say: 0 2 2 / 2kE k= m

a

.  However, the physics of these one-
dimensional systems concerns only excitations near the “Fermi surface”, the boundary between 
filled (low energy) states at zero temperature and empty states.  This “Fermi surface” is in fact 
just two points in one dimension: / 2k π= ± .  In the neighborhood of these two Fermi points, it 
is an excellent approximation to replace the gently curving 0 2 2 / 2kE k= m  by straight line 
approximations—the slope being 2/ / /dE dk k m p m v= = =

a

. 
 
Linearizing in the neighborhood of / 2k π= , then, we take  

Filled electron states 0 0
/2k aE Eπ vq= +  (free electrons) 

/ 2k a= π  
Change in electronic energy levels near / 2k aπ=  from dimerization: in this 
region, the free electron curve is approximated with a straight line: 2 ./q k aπ= −  
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( )0 0 0

/ 2 / 2/ 2k a aE E v k a E vπ ππ= + − = + q , 
 
where 

/ 2 ,q k aπ= −  
 
just k measured from the Fermi point / 2aπ .  
 
The variable q is negative for the relevant states, since they are on the lower energy side.  
 
The density of states in k-space is a constant 2 / 2 /L Lπ π× = ,  remembering the two spin states 
per k-value.   
 
Recall 
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k k K
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but now  

/K aπ=  
 
and the lowering of energy of the electrons (counting it as a positive quantity) is: 
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where the extra factor of 2 counts the symmetrical contribution from the left-hand gap.  (In 
examining the above expression, recall that for the states we are interested in, 0k > / 2 ,k aπ<  

0 0
k k KE E −−  is negative.  The integrand on the right-hand side is still positive, very small for small 

k, reaching a maximum of | |KV  at / 2 .k aπ= ) 
 
Putting in our linearized energy approximation, 
 

( )0 0 0
/ 2 / 2/ 2k a aE E v k a E vπ ππ= + − = + q , 

 
and remembering that now / ,K aπ=  
 

( )0 0 0
/ 2 / 2/ 2k K a aE E v k a E vπ ππ− − −= − + = − q . 

 
Since ,   0 0

/ 2 / 2a aE Eπ π−=
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0 0( ) 2k k K .E E v−− = q  
 
Substituting these linearized values in the integral for the total energy lowering:  
 

( ) ( )
/ 2 0

0 2

0

2 / 2 ( ) | |
a

k K

D

2 /E E Ldk v q v q V Ldq
π

π π−

−

− = + +∫∫  

 
where in terms of the variable q we have set the lower limit of integration at : we can safely 
be vague about this lower limit, as the integral turns out to be logarithmic.  

D−

 
Since the integral is over negative numbers, and we have taken the positive square root, it is zero 
for zero VK, as it must be. 
 
The integral can be done exactly, but it is more illuminating to divide the range of integration 
into Kv q V≤  and Kv q V> , then estimate the contributions from these two ranges 
separately. 
 
First, consider Kv q V≤ .  Here the integrand is of order KV , and the region of integration 

corresponding to 

qΔ

Kv q V≤  is of order /KV ,v  so the integral over this range is of order 

( ) 2/ KL v V .   
 
Second, in the region Kv q V> , we can write 

( )
2

2 2
2

| |2 ( ) | | / 2 | | 1
( )

K
K

Vv q v q V Ldq v q v q Ldq
v q

/π π
⎛ ⎞

+ + = + +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫  

and expand the square root term.  The leading terms cancel since q is negative, and the main 
contribution comes from the next term.  This gives: 
 

2
2 | | | |12 | | ln .

2

KV
K K

K
D

L V VLdqE V
v q v Dπ

−

−

Δ ≈ =∫  

 
The important thing here is the logarithm.  For sufficiently small KV , this large (negative) term 
will dominate any term which is just proportional to 2

KV .  But the elastic energy cost of the lattice 
“dimerizing”—the atoms forming pairs, so that the distance between atoms alternates on going 
along the chain—must be proportional to 2

KV .  This leads to the conclusion that some, probably 
small, dimerization is always going to happen—a one-dimensional equally spaced chain with 
one electron per ion is unstable.  
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This dimerization is known as a Peierls transition.  Peierls discovered it in the 1930’s when 
writing a section on one-dimensional models in an introductory solid-state textbook.  He put it in 
the book, but didn’t publish it otherwise.  As mentioned in the Introduction, it became very 
relevant later when some theories suggested that quasi-one-dimensional conductors, materials 
made up of loosely connected chains, each chain having one electron per atom for a half-filled 
lowest band, might be high-temperature superconductors.  It was found instead that many such 
materials actually became insulators on cooling: the reason was that at high temperatures, the 
electrons filled states above and below the point / 2aπ  fairly equally, so dimerization did not 
lower the overall energy much.  On lowering the temperature, a point was reached where the 
Peierls transition gave a lower energy state, and the material became an insulator. 
 
Reference: Rudolf Peierls, More Surprises in Theoretical Physics, Princeton.  
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