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Plane Waves and Partial Waves 
We are considering the solution to Schrödinger’s  equation for scattering of an incoming plane 
wave in the z-direction by a potential localized in a region near the origin, so that the total wave 
function beyond the range of the potential has the form 
 

( ) ( )cos, , , .
ikr

ikr er e f
r

θψ θ ϕ θ ϕ= +  

 
The overall normalization is of no concern, we are only interested in the fraction of the ingoing 
wave that is scattered.  Clearly the outgoing current generated by scattering into a solid angle 

 at angle θ, φ  is dΩ ( ) 2
,f dθ ϕ Ω  multiplied by a velocity factor that also appears in the 

incoming wave.  
 
Many potentials in nature are spherically symmetric, or nearly so, and from a theorist’s point of 
view it would be nice if the experimentalists could exploit this symmetry by arranging to send in 
spherical waves corresponding to different angular momenta rather than breaking the symmetry 
by choosing a particular direction.  Unfortunately, this is difficult to arrange, and we must be 
satisfied with the remaining azimuthal symmetry of rotations about the ingoing beam direction. 
 
 In fact, though, a full analysis of the outgoing scattered waves from an ingoing plane wave 
yields the same information as would spherical wave scattering.   This is because a plane wave 
can actually be written as a sum over spherical waves: 
 

. cos (2 1) ( ) (cos )ik r ikr l
l l

l

e e i l j kr Pθ θ= = +∑  

 
Visualizing this plane wave flowing past the origin, it is clear that in spherical terms the plane 
wave contains both incoming and outgoing spherical waves.  As we shall discuss in more detail 
in the next few pages, the real function ( )lj kr is a standing wave, made up of incoming and 
outgoing waves of equal amplitude.  
 
We are, obviously, interested only in the outgoing spherical waves that originate by scattering 
from the potential, so we must be careful not to confuse the pre-existing outgoing wave 
components of the plane wave with the new outgoing waves generated by the potential.   
 
The radial functions ( )lj kr appearing in the above expansion of a plane wave in its spherical 
components are the spherical Bessel functions, discussed below.  The azimuthal rotational 
symmetry of plane wave + spherical potential around the direction of the ingoing wave ensures 
that the angular dependence of the wave function is just (cos )lP θ , not ( ),lmY θ ϕ .  The coefficient 
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( )2 1li l + is derived in Landau and Lifshitz, §34, by comparing the coefficient of ( )cos nkr θ  on 

the two sides of the equation: as we shall see below, ( does not appear in )nkr ( )lj kr  for l greater 

than n, and ( )cos nθ does not appear in (cos )lP θ  for l less than n, so the combination 

( cos nkr )θ only occurs once—in the nth term, and the coefficients on both sides of the equation 
can be matched.  (To get the coefficient right, we must of course specify the normalizations for 
the Bessel function—see below—and the Legendre polynomial.)  

Mathematical Interval: The Spherical Bessel and Neumann Functions 
The plane wave  is a trivial solution of Schrödinger’s equation with zero potential, and 
therefore, since the 

.ik re
(cos )lP θ  form a linearly independent set, each term (( ) cosl lj kr P )θ  in the 

plane wave series must be itself a solution to the zero-potential Schrödinger’s equation.  It 
follows that ( )lj kr satisfies the zero-potential radial Schrödinger equation: 
 

( ) ( ) ( ) ( )
2

2
2 2

12 0.l l l

l ld dR r R r k R r
dr r dr r

+⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠
=  

 
The standard substitution ( ) ( ) /l lR r u r r=  yields 
  

( ) ( ) ( )
2

2
2 2

1
0ld u r l l

k u r
dr r

+⎛ ⎞
+ − =⎜ ⎟
⎝ ⎠

 

 
  
For the simple case l = 0 the two solutions are ( )0 sin , cosu r kr kr= .  The corresponding radial 
functions R0(r) are (apart from overall constants) the zeroth-order Bessel and Neumann functions 
respectively.   
 
The standard normalization for the zeroth-order Bessel function is 
 

( )0
sin ,krj kr

kr
=  

and the zeroth-order Neumann function 
 

( )0
cos .krn kr

kr
= −  

 
Note that the Bessel function is the one well-behaved at the origin: it could be generated by 
integrating out from the origin with initial boundary conditions of value one, slope zero.  
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Here is a plot of ( )0 0 and ( )j kr n kr from kr = 0.1 to 20: 

 
For nonzero l, near the origin is ( )1( )  or .ll

lR r r r− +∼ ∼  The well-behaved  solution is the 
Bessel function, the singular function the Neumann function.  The standard normalizations of 
these functions are given below.  

lr∼

 
Here are 5 50( ) and ( )j kr j kr : 
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Detailed Derivation of Bessel and Neumann Functions 
This subsection is just here for completeness.  We use the dimensionless variable ρ = kr.  
 
To find the higher l solutions, we follow a clever trick given in Landau and Lifshitz (§33).  
 
Factor out the lρ  behavior near the origin by writing  
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( ) ( ).l

l lR ρ χ ρ=  

The function ( )lχ ρ  satisfies 

( ) ( ) ( ) ( )
2

2

2 1
0.l l

ld d
d d

χ ρ χ ρ χ ρ
ρ ρ ρ

+
l+ + =  

 
The trick is to differentiate this equation with respect to ρ : 
 

( ) ( ) ( ) ( ) ( )
3 2

3 2 2

2 1 2 1
1 0l l

l ld d d
d d d

χ ρ χ ρ χ ρ
ρ ρ ρ ρ ρ

+ +⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠
.l =  

 

Writing purely formally ( ) ( )1l l
d

d
χ ρ ρχ ρ

ρ += , the equation becomes 

  

( ) ( ) ( ) ( )
2

1 12

2 2
0.l l l

ld d
d d

χ ρ χ ρ χ ρ
ρ ρ ρ+ +

+
1++ + =  

 
But this is the equation that ( )1lχ ρ+ must obey!  So we have a recursion formula for generating 

all the ( )lj ρ  from the zeroth one: ( ) ( )1
1 ,l l

d
d

χ ρ χ
ρ ρ+ = ρ l and ( ) ( ) ( )l

lj ρ ρ χ ρ= , up to a  

normalization constant fixed by convention.  
 
In fact, the standard normalization is 
 

( ) ( ) 1 sin .
l

l
l

dj
d

ρρ ρ
ρ ρ ρ

⎛ ⎞ ⎛
= − ⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

)

 

 
Now  
 

( ) ( ) (2

0

sin / 1 / 2 1 !n n nρ ρ ρ
∞

= − +∑  

 
This is a sum of only even powers of ρ.  It is easily checked that operating on this series with 

1
l

d
dρ ρ

⎛ ⎞
⎜
⎝ ⎠

⎟ can never generate any negative powers of ρ.  It follows that ( ) ,lj ρ written as a power 

series in ρ,  has leading term proportional to ρ l.   The coefficient of this leading term can be 
found by applying the differential operator to the series for ( )sin / ,ρ ρ  
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( ) ( )
 as  0.

2 1 !!

l

lj l
ρρ ρ →
+

∼  

 
This r l  behavior near the origin is the usual well-behaved solution to Schrödinger’s equation in 
the region where the centrifugal term dominates.   
 
Note that the small ρ behavior is not immediately evident from the usual presentation of the 

( )lj ρ ’s, written as a mix of powers and trigonometric functions, for example 
 

( ) ( )1 22 3

sin cos 3 1 3cos, sinj jρ ρ ρρ ρ ρ
ρ ρ ρ ρ ρ

⎛ ⎞
= − = − −⎜ ⎟

⎝ ⎠
2 ,   etc. 

 
Turning now to the behavior of the ( )lj ρ ’s for large ρ,  from  
 

( ) ( ) 1 sin
l

l
l

dj
d

ρρ ρ
ρ ρ ρ

⎛ ⎞ ⎛
= − ⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

 

 
 
it is evident that the dominant term in the large ρ  regime (the one of order 1/ρ) is generated by 
differentiating only the trigonometric function at each step.  Each such differentiation can be 
seen to be equivalent to multiplying by (-1) and subtracting p/2 from the argument, so 
 

( ) 1 sin  as .
2l

lj πρ ρ ρ
ρ

⎛ ⎞→ − →⎜ ⎟
⎝ ⎠

∞  

 
These ( )lj ρ , then, are the physical partial-wave solutions to the Schrödinger equation with zero 

potential.  When a potential is turned on, the wave function near the origin is still lρ∼  
(assuming, as we always do, that the potential is negligible compared with the ( ) 21 /l l ρ+ term 
sufficiently close to the origin).  The wave function beyond the range of the potential can be 
found numerically in principle by integrating out from the origin, and in fact will be like 
( )lj ρ above except that there will be an extra phase factor, called the “phase shift” and denoted 

by δ) in the sine.  The significance of this is that in the far region, the wave function is a linear 
combination of the Bessel function and the Neumann function (the solution to the zero-potential 
Schrödinger equation singular at the origin).  It is therefore necessary to review the Neumann 
functions as well. 
 
As stated above, the l = 0 Neumann function is  
 

( )0
cos ,n ρρ
ρ

= −  

the minus sign being the standard convention.  
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An argument parallel to the one above for the Bessel functions establishes that the higher-order 
Neumann functions are given by: 
 

( ) ( ) 1 cos .
l

l
l

dn
d

ρρ ρ
ρ ρ ρ

⎛ ⎞ ⎛
= − −⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

 

Near the origin 

( ) ( )
1

2 1 !!
as 0l l

l
n ρ ρ

ρ +

−
→∼  

 
and for large ρ 
 

( ) 1 cos  as ,
2l

ln πρ ρ ρ
ρ

⎛ ⎞→ − − →∞⎜ ⎟
⎝ ⎠

 

 

so a function of the form 1 sin
2

lπρ δ
ρ

⎛ − +⎜
⎝ ⎠

⎞
⎟  asymptotically can be written as a linear 

combination of Bessel and Neumann functions in that region. 
 
Finally, the spherical Hankel functions are just the combinations of Bessel and Neumann 
functions that look like outgoing or incoming plane waves in the asymptotic region: 
 

( ) ( ) ( ) ( ) ( ) ( ), *l l l l l lh j in h j in ,ρ ρ ρ ρ ρ= + = − ρ  
so for large ρ, 

( )
( )

( )
( )/ 2 / 2

, *
i l i l

l l
e eh h

i i

ρ π ρ π

ρ ρ
ρ ρ

− −

→ → − .
−

 

 
 

The Partial Wave Scattering Matrix 
Let us imagine for a moment that we could just send in a (time-independent) spherical wave, 
with θ variation given by  Pl(cosθ). For this l th partial wave (dropping overall normalization 
constants as usual) the radial function far from the origin for zero potential is 
 

( )
( ) ( )/ 2 / 21 sin .

2 2

i kr l i kr l

l
l i e ej kr kr

kr k r r

π ππ − − + −⎛ ⎞⎛ ⎞→ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
 
If now the (spherically symmetric) potential is turned on, the only possible change to this 
standing wave solution in the faraway region (where the potential is zero) is a phase shift δ: 
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( )sin sin .
2 2 l

l lkr kr kπ π δ⎛ ⎞ ⎛− → − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 

 
This is what we would find on integrating the Schrödinger equation out from nonsingular 
behavior at the origin.  
 
But in practice, the ingoing wave is given, and its phase cannot be affected by switching on the 
potential.  Yet we must still have the solution to the same Schrödinger equation, so to match with 
the result above we multiply the whole partial wave function by the phase factor ( )li ke δ .  The 
result is to put twice the phase change onto the outgoing wave, so that when the potential is 
switched on the change in the asymptotic wave function must be 
 

( ) ( ) ( ) ( ) ( )/ 2/ 2 / 2 / 2

.
2 2

i kr li kr l i kr l i kr l
lS k ei e e i e

k r r k r r

ππ π π + −− − + − − −⎛ ⎞⎛ ⎞
− → −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
This equation introduces the scattering matrix 
 

( ) ( )2 ,li k
lS k e δ=  

 
which must lie on the unit circle |S| =1 to conserve probability—the outgoing current must equal 
the ingoing current.  If there is no scattering, that is, zero phase shift, the scattering matrix is 
unity. 
 
It should be noted that when the radial Schrödinger’s equation is solved for a nonzero potential 
by integrating out from the origin, with 0 and 1ψ ψ ′= = initially, the real function thus 
generated differs from the wave function given above by an overall phase factor ( )li ke δ .  

Scattering of a Plane Wave 
We’re now ready to take the ingoing plane wave, break it into its partial wave components 
corresponding to different angular momenta, have the partial waves individually phase shifted by 
l-dependent phases, and add it all back together to get the original plane wave plus the scattered 
wave.   
 
We are only interested here in the wave function far away from the potential.  In this region, the 
original plane wave is 
 

( ) ( )/ 2 / 2
. cos (2 1) ( ) (cos ) (2 1) (cos ).

2

i kr l i kr l
ik r ikr l l

l l l
l l

i e ee e i l j kr P i l P
k r r

π π
θ θ θ

− − + −⎛ ⎞
= = + = + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

 
Switching on the potential phase shifts factor the outgoing wave: 
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( ) ( ) ( )/ 2/ 2 i kr li kr l
lS k ee

r r

ππ + −+ −

→  

 
The actual scattering by the potential is the difference between these two terms.  The complete 
wave function in the far region (including the incoming plane wave) is therefore: 
 

( ) ( ) ( )( ) ( )cos 1
, , 2 1 cos .

2

ikr
likr

l
l

S k er e l P
ik r

θψ θ ϕ θ
⎛ ⎞−

= + +⎜ ⎟⎜ ⎟
⎝ ⎠
∑  

 
The i l factor cancelled the   The -1 in / 2.ile π− ( )( )1lS k −  is there because zero scattering means 

.  Alternatively, it could be regarded as subtracting off the outgoing waves already present 
in the plane wave, as discussed above.  There is no ϕ-dependence since with the potential being 
spherically-symmetric the whole problem is azimuthally-symmetric about the direction of the 
incoming wave.  

1S =

 
It is perhaps worth mentioning that for scattering in just one partial wave, the outgoing current is 
equal to the ingoing current, whether there is a phase shift or not.  So, if switching on the 
potential does not affect the total current scattered in any partial wave, how can it cause any 
scattering?  The point is that for an ingoing plane wave with zero potential, the ingoing and 
outgoing components have the right relative phase to add to a component of a plane wave—a 
tautology, perhaps.  But if an extra phase is introduced into the outgoing wave only, the ingoing 
+ outgoing will no longer give a plane wave—there will be an extra outgoing part proportional to 

.  ( )( )1lS k −
 
Recall that the scattering amplitude ( ),f θ ϕ  was defined in terms of the solution to 
Schrödinger’s equation having an ingoing plane wave by  
 

( ) ( )cos, , , .
ikr

ikr er e f
r

θψ θ ϕ θ ϕ= +  

 
We’re now ready to express the scattering amplitude in terms of the partial wave phase shifts (for 
a spherically symmetric potential, of course): 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1

, 2 1 cos 2 1
2

l
l l

l l

S k
f f l P l f k P

ik
coslθ ϕ θ θ

−
= = + = +∑ ∑ θ  

 
where  

( ) ( ) ( )1 sinli k
l lf k e

k
δ δ= k  

 
is called the partial wave scattering amplitude, or just the partial wave amplitude.    
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So the total scattering amplitude is the sum of these partial wave amplitudes: 
 

( ) ( ) ( ) ( ) ( )1 2 1 sin cos .li k
l l

l
f l e k P

k
δθ δ θ= +∑  

 
The total scattering cross-section 
 

( )

( )

( ) ( ) ( ) ( )

2

2

0

2

0

2 sin

12 2 1 sin cos sinli k
l l

l

f d

f d

l e k P d
k

π

π

δ

σ θ

π θ θ θ

π δ θ

= Ω

=

= +

∫

∑

∫

∫ θ θ

 

 
and the normalization of the Legendre polynomials 
 

( )2

0

2cos sin
2 1lP d
l

π

θ θ θ =
+∫  

gives 
 

( ) ( ) ( )2 2
2

0 0

44 2 1 2 1 sinl l
l l

l f k l
k
π .σ π δ

∞ ∞

= =

= + = +∑ ∑  

 
So the total cross-section is the sum of the cross-sections for each l value. This does not mean, 
though, that the differential cross-section for scattering into a given solid angle is a sum over 
separate l values—the different components interfere.  It is only when all angles are integrated 
over that the orthogonality of the Legendre polynomials guarantees that the cross-terms vanish. 
 
Notice that the maximum possible scattering cross-section for particles in angular momentum 
state l is  ( )  which is four times the classical cross section for that partial wave 
impinging on, say, a hard sphere!   (Imagine semiclassically particles in an annular area: angular 
momentum L = rp, say, but  and 

(24 / 2 1 ,k lπ + )

l kL = p =   so l = rk.    Therefore the annular area 
corresponding to angular momentum “between” l and l + 1 has inner and outer radii and 

and therefore area 
/l k

( )1 /l + k ( ) 22 1 /lπ + k .)   The quantum result is essentially a diffractive effect, 
we’ll discuss it more later. 
 
It’s easy to prove the optical theorem for a spherically-symmetric potential: just take the 
imaginary part of each side of the equation 
 

( ) ( ) ( ) ( ) ( )1 2 1 sin cosli k
l l

l
f l e k P

k
δθ δ θ= +∑  
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at θ = 0, using ( )1 1lP = ,   
 

( ) ( ) (21Im 0 2 1 sin l
l

)f l k
k

θ δ= = +∑   

 
from which the optical theorem ( )Im 0 / 4f kσ π=  follows immediately. 
 
It’s also worth noting what the unitarity of the lth partial wave scattering matrix  implies 

for the partial wave amplitude 

† 1l lS S =

( ) ( ) ( )1 sinli k
l lf k e

k
δ δ= k .  Since ( ) ( )2 ,li k

lS k e δ=  it follows that  

 
( ) ( )1 2 .l lS k ikf k= +  

 
From this, gives: † 1l lS S =
 

( ) ( ) 2
Im .l lf k k f k=  

 
This can be put more simply:  

( )
1Im .

l

k
f k

= −  

In fact, 

( ) ( )( )
1 .

cotl
l

f k
k kδ

=
i−

 

 

Phase Shifts and Potentials: Some Examples 
We assume in this section that the potential can be taken to be zero beyond some boundary 
radius b.  This is an adequate approximation for all potentials found in practice except the 
Coulomb potential, which will be discussed separately later.  
 
Asymptotically, then,  
 

( )
( ) ( ) ( )

( )

( )( )
( )

( ) ( ) ( ) (( )

/ 2 2 / 2

2

sin / 2

sin / 2 cos cos / 2 sin .

l

l

l

i kr l i k i kr l

l

i k

l

i k

l l

i e e er
k r r

e kr k l
kr

e kr l k kr l k
kr

π δ π

δ

δ

)

ψ

δ π

π δ π δ

− − + −⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

= + −

= − + −
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This expression is only exact in the limit  but since the potential can be taken zero 
beyond r = b, the wave function must have the form 

,r →∞

 
( ) ( ) ( ) ( ) ( ) ( )( )cos sinli k

l l l lr e k j kr k n krδ
lψ δ δ= −  

for r > b.   
 
(The - sign comes from the standard convention for Bessel and Neumann functions—see 
earlier.) 
 
The Hard Sphere 
The simplest example of a scattering potential: 
 

( )
( )

 for  ,

0   for  .

V r r R

V r r R

= ∞ <

= ≥
 

 
The wave function must equal zero at r = R, so from the above form of ( )l rψ , 
 

( ) ( )
( )

tan .l
l

l

j kR
k

n kR
δ =  

 
For l = 0,  

( ) ( )
( )0

sin /
tan tan ,

cos /
kR kR

k k
kR kR

δ = − = − R

R

 

 
so  This amounts to the wave function being effectively moved over to begin at R 
instead of at the origin: 

( )0 .k kδ = −

 
( ) ( )sin sinsin k r k r Rkr

kr kr kr
δ+ −

→ =  

 
for r > R, of course 0ψ =  for r  <  R.  
 
For higher angular momentum states at low energies (kR << 1), 
 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( )( )

2 1

1 2

/ 2 1 !!
tan .

2 1 !!/ 2 1 2 1 !!

l l
l

l l
l

j kR kR l kR
k

n kR l kR l l
δ

+

+

+
= ≈ − = −

− + −
 

 
Therefore at low enough energy, only  l = 0 scattering is important—as is obvious, since an 
incoming particle with momentum p k= and angular momentum l  is most likely at a distance 
l/k  from the center of the potential at closest approach, so if this is much greater than R, the 
phase shift will be small. 
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The Born Approximation for Partial Waves 
From the definition of ( ),f θ ϕ  

( ) ( , )
i k r

ik r
k

er e f
r

ψ θ ϕ⋅= +  

and 
  

3
2( ) ( ) ( )

2
f

i kr
i k rik r

k k

m er e d r e V r r
r

ψ ψ
π

′− ⋅⋅ ′ ′ ′= − ∫  

 
recall the Born approximation amounts to replacing the wave function ( )k rψ ′ in the integral on 
the right by the incoming plane wave, therefore ignoring rescattering. 
 
To translate this into a partial wave approximation, we first take the incoming  to be in the z-
direction, so in the integrand we replace 

k
( )k rψ ′  by 

 
cos (2 1) ( ) (cos ).ikr l

l l
l

e i l j kr Pθ θ′ ′ ′= +∑  

 Labeling the angle between fk  and r′  by γ,  
 

( ) (2 1) ( ) (cos ).f li k r
l l

l
e i l j kr P γ′− ⋅ ′= − +∑  

 
Now fk   is in the direction ( ),θ ϕ  and r′  in the direction ( ),θ ϕ′ ′ , and γ is the angle between 
them. For this situation, there is an addition theorem for spherical harmonics: 
 

( ) ( ) (*4cos , , .
2 1

l

l lm
m l

P Y Y
l
π )lmγ θ ϕ θ ϕ

=−

′ ′=
+ ∑  

 
 On inserting this expression and integrating over ,θ ϕ′ ′ , the nonzero m terms give zero, in fact 
the only nonzero term is that with the same l as the term in the ( )k rψ ′  expansion, giving 
 

( ) ( ) ( ) ( ) ( )( )22
2

0 0

2 2 1 cosl l
l

mf l P r drV r j krθ θ
∞∞

=

= − +∑ ∫  

and remembering 
 

( ) ( ) ( ) ( ) ( )1 2 1 sin cosli k
l l

l
f l e k P

k
δθ δ θ= +∑  

 
it follows that for small phase shifts (the only place it’s valid) the partial-wave Born 
approximation reads 
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( ) ( ) ( )( )22
2

0

2 .l l
mkk r drV r j kδ

∞

≈ − ∫ r  

Low Energy Scattering: the Scattering Length 
From  

( ) ( )( )
1 ,

cotl
l

f k
k kδ

=
i−

 

 
the l = 0 cross section is 

( )
0 22

0

4 .
cot

l
k k i

πσ
δ

= =
−

 

 
At energy  the  radial Schrödinger equation for 0,E → u rψ=  away from the potential becomes 

, with a straight line solution 2 2/d u dr = 0 ( ) ( ).u r C r a= −   This must be the  limit of 

, which can only be correct if δ0 is itself linear in k for sufficiently 

small k, and then it must be  a being the point at which the extrapolated external 
wavefunction intersects the axis (maybe at negative r!)   So, as k goes to zero, the cot term 
dominates in the denominator and 

0k →

( ) ( )( 0sinu r C kr kδ′= + )
a( )0 ,k kδ = −

 
( ) 2

0 0 4l k a .σ π= → =  
 
The quantity a is called the scattering length.  
 
Integrating the zero-energy radial Schrödinger equation out from u(r) = 0 at the origin for a weak 
(spherical) square well potential, it is easy to check that a is positive for a repulsive potential, 
negative for an attractive potential. 
 
Repulsive potential, zero-energy wave function (so it’s a straight line outside of the well!): 
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Scattering Length for Square Well
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Attractive potential: 
 

Scattering Length for Square Well
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1
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-5 0 5 10

Potential Tangent Wavefunction
 

On increasing the strength of the repulsive potential, still solving for the zero-energy wave 
function, a tends to the potential wall—here’s the zero-energy wavefunction for a barrier of 
height 6: 
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Scattering Length for Square Well
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 For an infinitely high barrier, the wave function is pushed out of the barrier completely, and the 
hard sphere result is recovered: scattering length a, cross-section 4π a2.   
 
On increasing the strength of the attractive well, if there is a phase change greater that π/2 within 
the well, a will become positive. In fact, right at π/2, a is infinite!   
 

Scattering Length for Square Well
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-1

0

1

2

-5 0 5 10

Potential Tangent Wavefunction
 

 
 
And a little more depth to the well gives a positive scattering length: 
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Scattering Length for Square Well
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In fact, a well deep enough to have a positive scattering length will also have a bound state. This 
becomes evident when one considers that the depth at which the scattering length becomes 
infinite can be thought of as formally having a zero energy bound state, in that although the wave 
function outside is not normalizable, it is equivalent to an exponentially decaying function with 
infinite decay length.  If one now deepens the well a little, the zero-energy wave function inside 
the well curves a little more rapidly, so the slope of the wave function at the edge of the well 
becomes negative, as in the picture above.  With this slightly deeper well, we can now lower the 
energy slightly to negative values.  This will have little effect on the wave function inside the 
well, but make possible a fit at the well edge to an exponential decay outside—a genuine bound 
state, with wave function  outside the well.   re κ−∼
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If the binding energy of the state is really low, the zero-energy scattering wave function inside 
the well is almost identical to that of this very low energy bound state, and in particular the 
logarithmic derivative at the wall will be very close, so 1/ aκ ≅ , taking a to be much larger than 
the radius of the well. 
 
This connects the large scattering length to the energy of the weakly bound state,  
 

2 2 2 2B. E. / 2 / 2 .k m ma= =  
(Sakurai, p 414.)  
 
Wigner was the first to use this to estimate the binding energy of the deuteron from the observed 
cross section for low energy neutron-proton scattering. 
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