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Low Energy Approximations for the S Matrix 
In this section, we examine the properties of the partial-wave scattering matrix  
 

( ) ( )1 2l lS k ikf k= +  
 

for complex values of the momentum variable k.  Of course, general complex values of k do not 
correspond to physical scattering, but it turns out that the scattering of physical waves can often 
be most simply understood in terms of dominant singularities in the complex k plane. 
 
We begin with the complex k connection between (positive energy) scattering and (negative 
energy) bound states.  The asymptotic form of the l = 0 partial wave function in a scattering 
experiment is (from the previous lecture) 
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An l = 0 bound state has asymptotic wave function 
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where C is a normalization constant. 
 
Notice that this resembles an “outgoing wave” with imaginary momentum .  If we 
analytically continue the scattering wave function from real k into the complex k-plane, we get 
both exponentially increasing and decreasing wave functions, making no physical sense. But 
there is an exception to this general observation: if the scattering matrix becomes infinite 
at some complex value of k, the exponentially decreasing term will be infinitely larger than the 
exponentially increasing term.  In other words, we’ll only have a decreasing wave function—a 
bound state.  We know that the energy of a bound state has to be real and negative, and is also 
equal to , so this can only happen for k  pure imaginary, 

k iκ=

( )0S k

2 2 / 2k= m k iκ= . 
 
Now, the existence of a low energy bound state means that the S matrix has a pole (on the 
imaginary axis) close to the origin, so this will strongly affect low energy (near the origin, but 
real k) scattering.   Let’s see how that works using the low-energy approximation discussed 
previously.  Recall that the l = 0 partial wave amplitude  
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and at low energy so ( )0 ,k kδ = − a

( ) ( )( )0
1 1

1/1/
f k

ik ak ka i
= = −

+− −
, 

and  
 

( ) ( ) ( )
( )0 0

/
1 2

/
k i a

S k ikf k
k i a
+

= + = −
−

. 

 
Note that as , as it should, since 1S → 0k → ( )0 0k kaδ = − →  and ( ) ( )02

0
i kS k e δ= .  Note also 

that this approximation correctly gives ( )0 1S k = .   
 
This  has a pole in the complex plane at ( )0S k /k i a= , and if this corresponds to a bound state 

having , then the binding energy   In fact, though, we run into a 
problem here: we get the same form of 

1/ aκ = 2 2 2 2/ 2 / 2 .m mκ == = a
( )0S k  at low energies even for a repulsive potential, 

which certainly doesn’t have a bound state!  The pole in ( )0S k  only means that we can have an 
asymptotic wave function of the right form, but it does not guarantee that this asymptotic form 
will go smoothly to nonsingular behavior at the origin.  For a repulsive potential, it’s easy to see 
that the zero (or negative) energy wave function on integrating out from the origin slopes more 
and more steeply upwards, so could never, with increasing r, go over to asymptotic decay. 

Effective Range 
The low energy approximation above can be written  
 

( )0cot 1/k kδ −� a . 
 
We shall now derive a better approximation, 
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where , called the “effective range”, gives some measure of the extent of the potential (in 
contrast to a, which, as we have seen can be arbitrarily large, even for a short-range potential). 
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A useful mathematical tool needed at this point is the Wronskian.  For two functions ( ) ( ),f x g x  
the Wronskian is defined as 
 

( ),W f g fg f g′ ′= − , 
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the prime denoting differentiation as usual.  From this, ( ),W f g fg f g′ ′′ ′′= − , and if 

( ) ( ),f x g x satisfy the same second-order differential equation (like the Schrödinger equation 

with the same energy) then ( )0,  so ,W W f′ = g  is constant, independent of x.  
 
For the radial Schrödinger equation, asymptotically 
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where we now show k explicitly.  This asymptotic function v(k, r) satisfies the Schrödinger 
equation for zero potential, but does not have the correct physical boundary behavior at r = 0. 
 
Since in the low-energy limit ( )0 ,k kδ = −  the k = 0 asymptotic wave function 
 

( )0, 1 /v r r a= −  
 
(taking 01/ sinC δ= ).   
 
From the Schrödinger equation 
 

( ) ( )( ) ( ) ( )2 2, 2 / , ,u k r mV r u k r k u k r′′− + ==  
 
it is easy to check that the Wronskian of ( ),u k r with the corresponding zero energy function 

satisfies: (0,u r )
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(The term involving the potential has canceled out: dW/dr is nonzero here because these two 
functions don’t satisfy the same differential equation, the energy terms are different.) 
 
The corresponding functions ( ) ( ), , 0,v k r v r  satisfy the same Wronskian equation: 
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We can find a formula for the effective range  by integrating the difference between these two 
equations from r = 0 to infinity: the two solutions u, v differ only within the range of the 
potential, and appropriately normalizing them, then taking the difference, gives a measure of this 
range. 
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For r large, , so there is zero contribution from the upper end.  For , the 
properly-behaved u functions go to zero, the v functions are  

( ) (,u k r v k r→ 0r →
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from which, with 
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it follows immediately that  
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Now, by definition  coincide outside the range of the potential, but moving from 
that region towards the origin, they part company when the potential kicks in, with  
as   Therefore the integral above is a rough measure of the actual range of the potential— 
about half of it (hence the factor of 2 in defining ).   Note again the contrast with a, which can 
be infinite for a short range potential.  

( ) (0, , 0,u r v r )
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0.r →
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Coulomb Scattering and the Hydrogen Atom Bound States 
One particular set of bound states in a potential we’ve spent a good deal of time on are the states 
of the hydrogen atom, and it is interesting to see how they relate to scattering. Recall that the 
asymptotic form of the bound state wave function is: 
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But this doesn’t have the bound-state form we found above from the analytic continuation 
argument, there’s an extra !  What’s going on?  The problem is that in all our previous work, 
we assumed that if we looked far enough away from the center of the potential, the radial 
Schrödinger equation could be taken to be that for zero potential, to any desired accuracy.  The 
Coulomb potential, though, does not decay fast enough with distance for this to be true.  For 
instance, it has bound states having arbitrarily large radii.  
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Writing 
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we have 
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Note that the extra term in the exponent keeps on growing, without limit!  We are never free of 
the potential.  
 
But how does this analysis of hydrogen atom wave functions relate to positive-energy scattering 
states?  We can just analytically continue this result back to real k to find out. Replacing κ−  by 
ik  gives: 
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So we have scattering states that are not of the standard form either—the phase shift is infinite, 
and not well-defined.  But we found this result be analytically continuing from the hydrogen 
atom bound states.  Let’s check it: let us look at the radial Schrödinger equation for positive 
energies at large r. Writing R(r) = u(r)/r as usual, let us also put u(r) = eikrv(r) for large r, and we 
can also ignore the centrifugal barrier term, so 
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The equation for v(r) is 
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and since v(r) is slowly varying, the second derivative can be ignored, so 
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  This leads immediately to the same form we found by analytic continuation. 

Resonances and Associated Zeros 
Recall in the first semester we discussed α-decay: an α particle in a heavy nucleus can be thought 
of as trapped in a potential well generated by the attractive nuclear forces.  A spherical square 
well is a workable approximation, except that this square well is at the top of a hill—outside the 
nucleus, the repulsive electrostatic potential is ( ) 22 2 /Z e r− , sloping down from the well edge 
to zero as .   This means that for a radioactive nucleus, although the energy level would 
be at negative energy for the square well on level ground, actually it’s above the bottom of the 
electrostatic hill, and the  wave function will not be decaying but oscillating. This 
asymptotic wave is of course very tiny, since typically the chances of detecting the α well outside 
the nucleus, that is, of decay, is one in millions of years.  

r →∞

r →∞

 
Now consider the reverse process: imagine we bombard a decayed nucleus with α particles. If we 
sent in one at exactly the right energy (very difficult—this is a thought experiment!) the wave 
function would be exactly the same as that for α decay. The wave function inside the nucleus 
would be huge compared with that outside, we’d never see our α again.  Less dramatically, if we 
sent in one close to that energy, the wave function would still be very large inside the nucleus, 
meaning that the particle would spend a long time inside before coming out again.  (Recall for a 
particle in a roller coaster potential in one dimension, the wave function is large where the 
particle spends a lot of time—that’s where you’re most likely to find it.)  This is a resonance: at 
just the right energy, the amplitude of the wave function within the potential becomes very large, 
analogous to the amplitude of a classical driven oscillator as the driving frequency is adjusted to 
the natural oscillator frequency.  
 
Can we understand this in terms of poles in the S matrix?  Considered as a function of energy, 
the S matrix has poles at negative energies corresponding to bound states.  But this is a positive 
energy—and ( ) 1S k = for positive energies: that’s the regime of real physical scattering.  What 

it can have is a pole near a positive energy, in the complex plane.  To keep ( ) 1S k = , it would 
then have to have a zero at the mirror image point, that is, be locally of the form 
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 From this, 
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so 

( )0 / 2l Eδ π= , 
 
and the scattering cross section reaches its maximum possible value, recall  
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For a narrow resonance (small ) the phase shift Γ ( )l Eδ  goes rapidly from 0 to π as the energy is 
increased through .  Most of the variation occurs within an energy range Γ  of ,  is called 
the width of the resonance.  If the resonance is superimposed on a slowly varying background 
phase shift δ, then it causes an increase from δ to δ + π.  This will pass through 0 or π, depending 
on the initial sign of δ, so the maximum scattering at phase shift π /2 will have associated with it 
an energy at which there is zero scattering.  For substantial background δ, the zero could be close 
to the peak, as illustrated below: 

0E 0E Γ
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