
Time-Dependent Perturbation Theory 
Michael Fowler  7/6/07 

Introduction: General Formalism 
We look at a Hamiltonian ( )0H H V t= + , with ( )V t  some time-dependent perturbation, so now 
the wave function will have perturbation-induced time dependence.  
 
Our starting point is the set of eigenstates n  of the unperturbed Hamiltonian 0

nH n E n= , 

notice we are not labeling with a zero, no 0
nE , because with a time-dependent Hamiltonian, 

energy will not be conserved, so it is pointless to look for energy corrections.  What happens 
instead, provided the perturbation is not too large, is that the system makes transitions between 
the eigenstates n  of . 0H
 
Of course, even for V = 0, the wave functions have the usual time dependence,  
 

( ) /niE t
n

n

t c eψ −= n∑  

with the cn’s constant.  What happens on introducing ( )V t  is that the cn’s themselves acquire  
time dependence,  
 

( ) ( ) /niE t
n

n

t c t eψ −= n∑  

 
and this time dependence is determined by Schrödinger’s equation with : ( )0H H V t= +
 

( ) ( )( ) ( )/ /0n niE t iE t
n n

n n
i c t e n H V t c t e

t
− −∂

= +
∂ ∑ ∑ n  

so  
( ) ( ) ( )/ /n niE t iE t

n n
n n

i c t e n V t c t e n− −=∑ ∑  

 

Taking the inner product with the bra /miE tm e , and introducing m n
mn

E Eω −
= , 

 
( ) mn mni t i t

m n
n n

i c m V t n c e V e cω ω= =∑ ∑ mn n  

 
This is a matrix differential equation for the cn’s : 
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and solving this set of coupled equations will give us the cn(t)’s, and hence the probability of 
finding the system in any particular state at any later time. 
 
If the system is in initial state i  at t = 0,   the probability amplitude for it being in state f  at 
time t is to leading order in the perturbation 
 

( ) ( )
0

.fi

t
i t

f fi fi
ic t V t e dtωδ ′′ ′= − ∫  

 
The probability that the system is in fact in state f  at time t is therefore 
 

( ) ( )
2

2

2
0

1 .fi

t
i t

f fic t V t e dtω ′′ ′= ∫  

 
Obviously, this is only going to be a good approximation if it predicts that the probability of 
transition is small—otherwise we need to go to higher order, using the Interaction Representation 
(or an exact solution like that in the next section). 
 
Example: kicking an oscillator. 
 
Suppose a simple harmonic oscillator is in its ground state 0  at t =  – ∞.  It is perturbed by a 

small time-dependent potential ( ) 2 2/ .tV t eExe τ−= −  What is the probability of finding it in the 

first excited state 1  at t = + ∞?    
 
Here ( ) 2 2/1 0 t

fiV t eE x e τ′−′ = − , and ( )†/ 2x m a aω= +

.

, from which the probability can be 

evaluated.  It is ( )    ( ) 2 22 2 2 2 / 2/ / 2e E m e ω τω πτ −

 
It’s worth thinking through the physical interpretations for very long and for very short times, 
and explaining the significance of the time for which the probability is a maximum. 
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The Two-State System: an Exact Solution 
For the particular case of a two-state system perturbed by a periodic external field, the matrix 
equation above can be solved exactly.  Of course, real physical systems have more than two 
states, but in fact for some important cases two of the states may be only weakly coupled to other 
degrees of freedom and the analysis then becomes relevant.  A famous example, the ammonia 
maser, is discussed at the end of the section. 
 
For a two-state system, then, the most general wave function is  
 

( ) ( ) ( )1 2/ /
1 21 2iE t iE tt c t e c t eψ − −= +  

 
and the differential equation for the cn(t)’s is: 
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1 1
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Writing 12ω ω+ =α  for convenience, the coupled equations are: 
 

1 2

2 1.

i t

i t

i c Ve c

i c Ve c

α

α−

=

=
 

 
These two first-order equations can be transformed into a single second-order equation by 
differentiating the second one, then substituting  from the first one and  from the second one 
to give 

1c 1c

2

2 2 2 .Vc i c cα= − − 2  

 
This is a standard second-order differential equation, solved by putting in a trial solution 

 .  This satisfies the equation if ( ) ( )2 2 0 i tc t c e Ω=
2 2

22 4
Vα α

Ω = − ± + , so, reverting to the 

original 12ω ω+ =α , the general solution is: 
 

( )
( )

2 22 2
21 2121

2 22 22
2

V Vi t i ti t
c t e Ae Be

ω ω ω ωω ω − −⎛ ⎞ ⎛ ⎞− + − +− ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

. 

 
Taking the initial state to be ( ) ( )1 20 1, 0 0c c= =  gives  A = -B.   
  
To fix the overall constant, note that at t = 0,   
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( ) ( )2 10 0V Vc c
i i

= = .  

 
Therefore 

( )

2

2 222 2 21
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21
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sin .
2

2

V
Vc t t

V
ω ω

ω ω
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Note in particular the result if 12 :ω ω=  

( ) 2 2
2 sin Vtc t ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

 
Assuming , and the two-state system to be initially in the ground state 2E E> 1 1 , this means 

that after a time  the system will certainly be in state / 4h V 2 , and will oscillate back and forth 
between the two states with period .   / 2h V
 
That is to say, a precisely timed period spent in an oscillating field can drive a collection of 
molecules all in the ground state to be all in an excited state.  The ammonia maser works by 
sending a stream of ammonia molecules, traveling at known velocity, down a tube having an 
oscillating field for a definite length, so the molecules emerging at the other end are all (or 
almost all, depending on the precision of ingoing velocity, etc.) in the first excited state.  
Application of a small amount of electromagnetic radiation of the same frequency to the 
outgoing molecules will cause some to decay, generating intense radiation and therefore a much 
shorter period for all to decay, emitting coherent radiation. 

A “Sudden” Perturbation 
A sudden perturbation is defined here as a sudden switch from one time-independent 
Hamiltonian  to another one , the time of switching being much shorter than any natural 
period of the system.  In this case, perturbation theory is irrelevant: if the system is initially in an 
eigenstate 

0H 0H ′

n  of , one simply has to write it as a sum over the eigenstates of , 0H 0H ′

n
n n n

′

′ ′= ∑ n .  The nontrivial part of the problem is in establishing that the change is 

sudden enough, by estimating the actual time taken for the Hamiltonian to change, and the 
periods of motion associated with the state n  and with its transitions to neighboring states.  
(We discussed one example last semester—an electron in the ground state in a one-dimensional 
box that suddenly doubles in size.  Other favorite examples include an atom with spin-orbit 
coupling in a magnetic field that suddenly reverses (Messiah p 743), and the reaction of orbiting 
electrons to nuclear α - or β -decay.) 
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Harmonic Perturbations: Fermi’s Golden Rule 
Let us consider a system in an initial state i  perturbed by a periodic potential ( ) i tV t Ve ω−=  
switched on at t = 0.  For example, this could be an atom perturbed by an external oscillating 
electric field, such as an incident light wave.  
 
What is the probability that at a later time t the system be in state f ? 
 
Recall the matrix differential equation for the cn’s : 
 
 

12

21

1 111 12

2 221 22

3 333

. . .

. . .
. . . .

. .. . . . .

. .. . . . .

i t

i t

c cV V e
c cV e V

i c cV

ω

ω

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
Since the system is definitely in state i  at t = 0, the ket vector on the right is initially 

.  1, 0i j ic c ≠= =
 
The first-order approximation to keep the vector 1, 0i j ic c ≠= =  on the right, that is, to solve the 
equations 
  

( ) fii t
f fii c t V e ω=  

 
Integrating this equation, the probability amplitude for an atom in initial state i  to be in state 

f  after time t  is, to first order: 
 

( ) ( )

( )

( )

0

1

fi

fi

t
i t

f

i t
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ic t f V i e dt

i ef V i
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ω ω

ω ω

ω ω

′−

−
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−
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The probability of transition is therefore 
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⎝ ⎠
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and we’re interested in the large t  limit.  
 

Writing ( ) / 2fiα ω ω= − , our function has the form 
2

2

sin tα
α

.   This function has a peak at 0α = , 

with maximum value t2, and width of order 1/t, so a total weight of order t. The function has 
more peaks at ( 1/ 2t n )α π= + .  These are bounded by the denominator at 21/α . For large t their 
contribution comes from a range of order 1/t also, and as t  the function tends to a →∞ δ  
function at the origin, but multiplied by t.  
 
This divergence is telling us that there is a finite probability rate for the transition, so the 
likelihood of transition is proportional to time elapsed. Therefore, we should divide by t to get 
the transition rate.  
 
To get the quantitative result, we need to evaluate the weight of the δ  function term. We use the 

standard result 
2

sin dξ ξ π
ξ

∞

−∞

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∫  to find  

2
sin t dα tα π
α

∞

−∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫ , and therefore 

 

( )
21 sinlim .

t

t
t

α πδ α
α→∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
Now, the transition rate is the probability of transition divided by t in the large t limit, that is,  
  

( ) ( ) ( )( )
( )

( )( )
( )

2

2

2 1
22
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sin / 21 1lim lim
/ 2

1

2
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i f t t

fi

fi

fi

tP t
R t f V i

t t

f V i

f V i

ω ω

ω ω

πδ ω ω

π δ ω ω

→
→ →∞ →∞

⎡ ⎤−
⎢ ⎥= =
⎢ ⎥−
⎣ ⎦

= −

= −

 

 
 
This last line is Fermi’s Golden Rule: we shall be using it a lot.  You might worry that in the long 
time limit we have taken the probability of transition is in fact diverging, so how can we use first 
order perturbation theory?   The point is that for a transition with fiω ω≠ , “long time” means 

( ) 1fi tω ω− , this can still be a very short time compared with the mean transition time, which 
depends on the matrix element.   In fact, Fermi’s Rule agrees extremely well with experiment 
when applied to atomic systems.  

Another Derivation of the Golden Rule 
Actually, when light falls on an atom, the full periodic potential is not suddenly switched on, on 
an atomic time  scale, but builds up over many cycles (of the atom and of the light).  Baym re-
derives the Golden Rule assuming the limit of a very slow switch on,  
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( ) t iV t e Ve tε ω−=  

 
with ε  very small, so V switched on very gradually in the past, and we are looking at times much 
smaller than 1/ε . We can then take the initial time to be −∞ , that is, 
 

( ) ( )
( )1 fi

fi

i i tt
i i t

f
fi

i ec t f V i e dt f V i
i

ω ω ε
ω ω ε

ω ω ε

− −
′− −

−∞

′= − = −
− −∫  

 
so 

( )
( )

22 2

22 2

1 t

f

fi

ec t f V i
ε

ω ω ε
=

− +
 

and the time rate of change 
 

( )
( )

22 2

22 2

1 2 t

f

fi

d ec t f V i
dt

εε

ω ω ε
=

− +
. 

In the limit 0ε → , the function  
 

( )
( )2 2

2 2 fi

fi

ε πδ ω ω
ω ω ε

→ −
− +

 

giving the Golden Rule again. 

Harmonic Perturbations: Second-Order Transitions 
Sometimes the first order matrix element f V i  is identically zero (parity, Wigner Eckart, etc.) 
but other matrix elements are nonzero—and the transition can be accomplished by an indirect 
route.  In the notes on the interaction representation, we derived the probability amplitude for the 
second-order process,  
 

( ) ( )
2

( )2 ( )

0 0

1 | ( ) | | ( ) |f n i

t t
i t t i t t i t

n S
n

c t dt dt e f V t n e n V t i e
i

ω ω ω
′

′− −
S

′ ′′ ′′− − −⎛ ⎞ ′ ′′ ′ ′′= < > <⎜ ⎟
⎝ ⎠

∑∫ ∫ >  

 
(writing /n nE ω= , etc.) 
Taking the gradually switched-on harmonic perturbation ( ) t i

SV t e Ve tε ω−= , and the initial time 
, as above, −∞

  

( ) ( ) ( ) ( )
2

2 1 | | | | f nf n i

t t
i i ti t i i

n
n

c t f V n n V i e dt dt e e
i

ω ω ω εω ω ω ω ε
′

′− − −− ′′− − −

−∞ −∞

⎛ ⎞ ′ ′′= < >< >⎜ ⎟
⎝ ⎠

∑ ∫ ∫ .t  

 
The integrals are straightforward, and yield 
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( ) ( ) ( )
2 2

2 1 | .
2 2

i f
t

i t
n

nf i n i

e f V n nc t e
i i

ε
ω ω

ω ω ω ε ω ω ω ε
− − | | |V i

i
< >< >⎛ ⎞= ⎜ ⎟ − − − − − −⎝ ⎠

∑  

 
Exactly as in the section above on the first-order Golden Rule, we can find the transition rate: 
 

( ) ( ) ( )
2

22
4

2 | | | | 2 .n f
n n i

d f V n n V ic t
dt i

π
iδ ω ω ω

ω ω ω ε
< >< >

= −
− − −∑ −  

 
(The  in the denominator goes to  on replacing the frequencies 4 ω  with energies E, both in 
the denominator and the delta function, remember that if E ω= , ( ) ( .Eδ ω δ= ) ) 
 
This is a transition in which the system gains energy 2 ω  from the beam, in other words two 
photons are absorbed, the first taking the system to the intermediate energy nω , which is short-
lived and therefore not well defined in energy—there is no energy conservation requirement into 
this state, only between initial and final states.  
 
Of course, if an atom in an arbitrary state is exposed to monochromatic light, other second order 
processes in which two photons are emitted, or one is absorbed and one emitted (in either order) 
are also possible. cc 
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