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Introduction 
If an atom (not necessarily in its ground state) is placed in an external electric field, the energy 
levels shift, and the wave functions are distorted.  This is called the Stark effect.  The new energy 
levels and wave functions could in principle be found by writing down a complete Hamiltonian, 
including the external field, and finding the eigenkets.  This actually can be done in one case: the 
hydrogen atom, but even there, if the external field is small compared with the electric field 
inside the atom (which is billions of volts per meter) it is easier to compute the changes in the 
energy levels and wave functions with a scheme of successive corrections to the zero-field 
values.  This method, termed perturbation theory, is the single most important method of solving 
problems in quantum mechanics, and is widely used in atomic physics, condensed matter and 
particle physics. 
 
It should be noted that there are problems which cannot be solved using perturbation theory, 
even when the perturbation is very weak, although such problems are the exception rather than 
the rule.  One such case is the one-dimensional problem of free particles perturbed by a localized 
potential of strength λ.  As we found earlier in the course, switching on an arbitrarily weak 
attractive potential causes the  free particle wave function to drop below the continuum of 
plane wave energies and become a localized bound state with binding energy of order 

0k =
2λ .  

However, changing the sign of λ to give a repulsive potential there is no bound state, the lowest 
energy plane wave state stays at energy zero.  Therefore the energy shift on switching on the 
perturbation cannot be represented as a power series in λ, the strength of the perturbation.  This 
particular difficulty does not in general occur in three dimensions, where arbitrarily weak 
potentials do not give bound states—except for certain many-body problems (like the Cooper 
pair problem) where the exclusion principle reduces the effective dimensionality of the available 
states.  

The Perturbation Series 
 We begin with a Hamiltonian  having known eigenkets and eigenenergies: 0H
 

0 0 0 0 .nH n E n=  
  
The task is to find how these eigenkets and eigenenergies change if a small term  (an external 
field, for example) is added to the Hamiltonian, so: 

1H

 
( )0 1 .nH H n E n+ =  

 
That is to say, on switching on ,   1H
 

0 0, .n nn n E E→ →  
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The basic assumption in perturbation theory is that  is sufficiently small that the leading 
corrections are the same order of magnitude as  itself, and the true energies can be better and 
better approximated by a successive series of corrections, each of order 

1H
1H

1 / 0H H compared with 
the previous one. 
 
The strategy, then, is to expand the true wave function and corresponding eigenenergy as series 
in 1 / 0H H .  These series are then fed into ( )0 1

nH H n E n+ = , and terms of the same order of 

magnitude in 1 / 0H H  on the two sides are set equal.  The equations thus generated are solved 
one by one to give progressively more accurate results. 
 
To make it easier to identify terms of the same order in 1 / 0H H  on the two sides of the equation, 
it is convenient to introduce a dimensionless parameter λ  which always goes with , and then 
expand 

1H
, nn E  as power series in λ , 0 1 2 2n n n nλ λ= + + +… , etc.   The ket mn  

multiplied by mλ  is therefore of order ( )1 0/ .
m

H H    
 
Thisλ  is purely a bookkeeping device: we will set it equal to 1 when we are through!   It’s just 
there to keep track of the orders of magnitudes of the various terms. 
 
Putting the series expansions for , nn E  in 
 

( )0 1
nH H n E nλ+ =  

we have 
 
( )( ) ( )( )0 1 0 1 2 2 0 1 2 2 0 1 2 2 .n n nH H n n n E E E n n nλ λ λ λ λ λ λ+ + + + = + + + + + +… … …  

 
We’re now ready to match the two sides term by term in powers of λ .   
 
The zeroth-order term, of course, just gives back 0 0 0 0 .nH n E n=   

First-Order Terms 
Matching the terms linear in λ on both sides:   
 

0 1 1 0 0 1 1 0 .n nH n H n E n E n+ = +  
 
This equation is the key to finding the first-order change in energy 1

nE .  Taking the inner product 

of both sides with 0n  : 
 

0 0 1 0 1 0 0 0 1 0 1 0 ,n nn H n n H n n E n n E n+ = +  
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then using 0 0 0

nn H n E= 0 ,  and 0 0 1n n = , we find 
 

1 0 1 0 .nE n H n=  
 
Taking now 1λ = , we have established that the first-order change in the energy of a state 
resulting from adding a perturbing term  to the Hamiltonian is just the expectation value of 

 in that state.   

1H
1H

 
For example, we can estimate the ground state energy of the helium atom by treating the 
electrostatic repulsion between the electrons as a perturbation.  The zeroth-order ground state has 
the two (opposite spin) electrons in the ground state hydrogen-atom wave function (scaled for the 
doubling of nuclear charge). The first-order energy correction 1

0E  is then given by computing the 

expectation value 2
12/e r  for this ground state wave function. 

 
The general expression for the first-order change in the wave function is found by taking the 
inner product of the first-order equation with the bra 0 ,m m n≠ , 
 

0 0 1 0 1 0 0 0 1 0 1 0 .n nm H n m H n m E n m E n+ = +  
 

The last term is zero, since 0 0 0m n = , and in the first term 0 0 0 0 ,mm H m E=  so 
 

0 1 0
0 1

0 0
n m

m H n
m n

E E
=

−
 

 
and therefore the wave function correct to first order is: 
 

0 0 1 0

0 0 .
m n n m

m m H n
E

n n
E≠

= + +
−∑00 1n n =  

 

The Second-Order Energy Term 
To find the second-order correction to the energy, it is necessary to match the second-order terms 
in 
 

( )( ) ( )( )0 1 0 1 2 2 0 1 2 2 0 1 2 2
n n nH H n n n E E E n n nλ λ λ λ λ λ λ+ + + + = + + + + +… … +…  

 
giving: 

0 2 1 1 0 2 1 1 2 0 .n n nH n H n E n E n E n+ = + +  
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Taking the inner product with 0n  yields: 
 

0 0 2 0 1 1 0 0 2 1 0 1 2 0 0 .n n nn H n n H n E n n E n n E n n+ = + +  
 

The leading terms on the two sides cancel as before.  What about the term 1 0 1
nE n n ?  Since 

0n n n= + 1 ,  and both 0,n n  are normalized, 0 1 1 0 0n n n n+ =  in leading order—that 

is to say, 0 1n n  is pure imaginary.  That just means that if to this order n  has a component 

parallel to 0n , that component has a small pure imaginary amplitude, and n  can be written (to 

this order) as 0  kets  in e n nα= + ⊥ 0 , with α  small.  But the phase factor can be eliminated 

by redefining the phase of n , and with that redefinition 1n  has no component in the 0n  

direction, we can therefore drop the term 1 0 1 .nE n n  
 
So the second-order correction to the energy is:  
 

0 0 1 0
0 1 1 0 1

20 1 0
2

0 0n
m n n m

m H n
E

E E≠

=
−∑0 0 .

m n n m

m m H n
n H n n H

E E≠

= =
−∑  

Selection Rules 
Perturbation theory involves evaluating matrix elements of operators.  Very often, many of the 
matrix elements in a sum are zero—obvious tests are parity and the Wigner-Eckart theorem. 
These are examples of selection rules: tests to find if a matrix element may be nonzero.  

The Quadratic Stark Effect 
When a hydrogen atom in its ground state is placed in an electric field, the electron cloud and the 
proton are pulled different ways, an electric dipole forms, and the overall energy is lowered. 
 
The perturbing Hamiltonian from the electric field is 1 cosH e z e r θ= =E E , where E  is the 
electric field strength, the field is in the z-direction, the electron charge e is negative. 
 
We shall denote the unperturbed eigenenergies of the hydrogen atom by 21/n nlmE E n= = − , so in 
particular we denote the ground state energy by E1.   
 
The first-order correction to the ground state energy 1

1 100 100E e z= E , where  
 

( ) 0

1/ 2
/

100 3
0

1100 .r ar e
a

ψ
π

−⎛ ⎞
≡ = ⎜ ⎟

⎝ ⎠
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This first-order term is zero since there are equal contributions from positive and negative z.   
 
The second-order term is 

2

2
1

1; , 1

100

n l m n

nlm e z
E

E E≠

=
−∑
E

 

 
where we are now using nlm  to denote the unperturbed hydrogen atom wave functions, and 

here the 21/nE n= −  (in Rydbergs) are the unperturbed energies. 
 
Most of the terms in this infinite series are zero—the selection rules help get rid of them as 
follows:  since e  is the  component of a spherical vector and  zE 0m = 100  is a zero angular 

momentum state, it follows from the Wigner-Eckart theorem that can only be 10nlm n .  This 
reduces the second-order sum over states to:  

2

2
1

1 1

10 100
.

n n

n e z
E

E E≠

=
−∑
E

 

 
This is still not easy to evaluate, but an upper bound can be found be observing that 

1 1nE E E E− ≥ − 2 , so  
 

22
0

1 1; ,2 1 2 1

1 110 100 100 100
n n l m

E n e z e z nlm nlm e z
E E E E≠ ≠

< =
− −∑ ∑E E E  

 
where we have temporarily restored the full sum over n, l, m, that is, we’ve put back all the zero 
terms.  The reason for this seeming backward step is that, having taken the energy-difference 
denominator outside the sum, we can even include 100  in the nlm  sum (it’s another zero 
term) and in fact we can even include the plane-wave (ionized) states as well as the bound states, 
since the plane waves all have energy greater than zero. At this point,  the sum becomes a 

sum over all states, and therefore just becomes the unit operator,  
, ,n l m
∑

 

, ,
,

n l m
nlm nlm I=∑  

so  

( )22
1

2 1

1 100 100 .E e z
E E

<
−

E  

 
For the ground state hydrogen wave function, 2 2

0100 100z a= , , so 2
1 0 2/ 2 , / 4E e a E E= − = 1
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( ) ( )22 2
1 023

04

1 8 .
3/ 2

2 3
0E e a a

e a
< =E� E  

 
 
Furthermore, since all the terms in the series for 2

1E are negative, the first term sets a lower 

bound on 2
1E : 

2

2
1

1 2

210 100
.

e z
E

E E
>

−

E
 

This can be evaluated in straightforward fashion to find  2 2
1 0

80.55 .
3

3E a> × E    

So, even though we have not actually evaluated the second-order correction to the energy 
explicitly, we have it bracketed between two values, the lower one being more than half the 
upper one.  Other ingenious methods have been developed (see Shankar or Sakurai) to find that 

the true answer is 2 2
1

9
4

3
0E a= E , but in fact the whole problem can be solved exactly using 

parabolic coordinates.   

Degenerate Perturbation Theory: Distorted 2-D Harmonic Oscillator 
The above analysis works fine as long as the successive terms in the perturbation theory form a 
convergent series.  A necessary condition is that the matrix elements of the perturbing 
Hamiltonian must be smaller than the corresponding energy level differences of the original 
Hamiltonian.  If   has different states with the same energy, in other words degenerate energy 
levels, and the perturbation has nonzero matrix elements between these degenerate levels, then 
obviously the theory breaks down.  To see just how it breaks down, and how to fix it, we 
consider the two-dimensional simple harmonic oscillator: 

0H

 

( )
2 2

0 21 .
2 2

x yp p
H m x

m
ω

+
= + +2 2y  

 
Recall that for the one-dimensional simple harmonic oscillator the ground state wave function is  
 

2 2
1/ 4 1/ 4

/ 2 / 20 m xm me eω ξω ω
π π

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

= =
 with m xωξ =

=
, and 

2
1/ 4

/ 21 2m e ξω ξ
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠=

.  

 
The two-dimensional oscillator is simply a product of two one-dimensional oscillators, so, 

writing m yωη =
=

, the ground state is ( )2 2
1/ 2

/ 20 m e ξ ηω
π

− +⎛ ⎞= ⎜ ⎟
⎝ ⎠=

, and the two (degenerate) next 

states, energy ω= above the ground state, are 
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( ) ( )2 2 2 2
1/ 2 1/ 2

/ 2 / 21,0 2 , 0,1 2 .m me eξ η ξ ηω ωξ η
π π

− + − +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =

 

 
Suppose now we add a small perturbation 
 

1 2 ,H m xα ω= y  
withα  a small parameter.  
 
Notice that 1 1 10 0 1,0 1,0 0,1 0,1H H H= = 0= , so according to naïve perturbation 
theory, there is no first-order correction to the energies of these states. 
 
However, on going to second-order in the energy correction, the theory breaks down.  The matrix 
element 11,0 0,1H   is nonzero, but the two states 0,1 , 1,0  have the same energy!  This 

gives an infinite term in the series for 2
nE .   

 
Yet we know that a small term of this type will not wreck a two-dimensional simple harmonic 
oscillator, so what is wrong with our approach?  It is helpful to plot the original harmonic 
oscillator potential (2 2 21

2 m x yω + )  together with the perturbing potential .  The first of 
course has circular symmetry, the second has axes in the directions 

2m xyα ω
x y= ± , climbing most 

steeply from the origin along x = y, falling most rapidly in the directions x = −y.  If we combine 
the two potentials into a single quadratic form, the original circles of constant potential become 
ellipses, with their axes aligned along x y= ± . 
 
The problem arises even in the classical two-dimensional oscillator: picture a ball rolling 
backwards and forwards in a smooth saucer, a circular bowl.  Now imagine the saucer is made 
slightly elliptical. The ball will still roll backwards and forwards through the center if it is 
released along one of the axes of the ellipse, although with different periods, as the axes differ in 
steepness.  However, if it is released at a point off the axes, it will describe a complex path 
resolvable into components in the two axis directions having different periods.  
 
For the quantum oscillator as for the classical one, as soon as the perturbation is introduced, the 
eigenkets are in the direction of the new elliptic axes.  This is a large change from the original x 
and y axes, and definitely not proportional to the small parameter α .  But the original 
unperturbed problem had circular symmetry, and there was no particular reason to choose the x 
and y axes as we did.  If we had instead chosen as our original axes the lines x y= ± , the kets 
would not have undergone large changes on switching on the perturbation.   
 
The resolution of the problem is now clear: before switching on the perturbation, choose a set of 
basis kets in a degenerate subspace such that the perturbation is diagonal in that subspace. 
 
In fact, for the simple harmonic oscillator example above, the problem can be solved exactly:  
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( ) ( ) ( )
2 2

2 2 2 2 21 1 1 1
2 2 2 2

x y x ym x y m xy mω α ω ω α α
⎡ ⎤+ −⎛ ⎞ ⎛ ⎞+ + = + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

 
and it is clear that, despite the results of naïve first-order theory, there is indeed a first order shift 
in the energy levels,  
 

( )1 1ω ω α ω α→ ± ≈ ±= = = / 2 .  

 

The Linear Stark Effect 
The hydrogen atom, like the two-dimensional harmonic oscillator discussed above, has a 
nondegenerate ground state but degeneracy in its lowest excited states.  Specifically, there are 
four n = 2 states, all having energy −1/4 Ryd :  
 

( ) 0

1/ 2
/ 2

200 3
0 0

1 2 ,
32

r arr e
a a

ψ
π

−⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) 0

1/ 2
/ 2

210 3
0 0

1, , cos ,
32

r arr e
a a

ψ θ φ θ
π

−⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) 0

1/ 2
/ 2

21 1 3
0 0

1, , sin .
32

r a irr e
a a

e φψ θ φ θ
π

− ±
±

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Perturbing this system with an electric field in the z-direction, 1 cosH e z e r θ= =E E ,  note first 
that naïve perturbation theory predicts no first-order shift in any of these energy levels.  
However, to second order, there is a nonzero matrix element between two degenerate levels 

1200 210H .  All the other matrix elements between these basis kets in the four-dimensional 
degenerate subspace are zero, so the only diagonalization necessary is within the two-
dimensional degenerate subspace spanned by 200 , 210 , where 
 

1 0
0

H
Δ⎛ ⎞

= ⎜ ⎟Δ⎝ ⎠
 

with 
 

0

1

2
/ 2

3
0 0 0

0

200 210

1 cos2 s
32

3 .

r a

H

r re e
a a a

e a

θ inr dr d dθ θ φ
π

∞

−

Δ =

⎛ ⎞ ⎛ ⎞⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

= −

∫
0

E

E
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Diagonalizing  within this subspace, then, the new basis states are 1H ( )200 210 / 2±  with 
energy shifts , linear in the perturbing electric field.   ±Δ
 
The states 21 1±  are not changed by the presence of the field to this approximation, so the 
complete energy map of the n = 2 states in the electric field has two states at the original energy 
of -1/4Ryd, one state moved up from that energy by Δ , and one down by Δ . 
 
Notice that the new eigenstates ( )200 210 / 2±  are not eigenstates of the parity operator—a 
sketch of their wave functions reveals that in fact they have nonvanishing electric dipole moment 
μG , indeed this is the reason for the energy shift, 03e a μ±Δ = = ⋅

GG∓ ∓E E .   
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