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Introduction

So far, we have concentrated on problems that were analytically solvable, such as the simple
harmonic oscillator, the hydrogen atom, and square well type potentials. In fact, we shall soon
be confronted with situations where an exact analytic solution is unknown: more general
potentials, or atoms with more than one electron. To make progress in these cases, we need
approximation methods. The best known method is perturbation theory, which has proved
highly successful over a wide range of problems (but by no means all). We shall soon be
discussing perturbation methods at length. First, though, we shall review two other
approximation methods: in this lecture, the variational method, then in the next lecture the
semiclassical WKB method. The variational method works best for the ground state, and in
some circumstances (to be described below) for some other low lying states; the WKB method is
good for higher states.

Variational Method for Finding the Ground State Energy

The idea is to guess the ground state wave function, but the guess must have an adjustable
parameter, which can then be varied (hence the name) to minimize the expectation value of the
energy, and thereby find the best approximation to the true ground state wave function. This
crude sounding approach can in fact give a surprisingly good approximation to the ground state
energy (but usually not so good for the wave function, as will become clear).

We’ll begin with a single particle in a potential, H = p*/2m+V (F). If the particle is restricted
to one dimension, and we’re looking for the ground state in any fairly localized potential well,
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we can start with the family of normalized Gaussians,

(z//, a| H |z//, a> , differentiate the result with respect to « , setting this to zero (and checking that

you have in fact found a minimum.) Not surprisingly, this gives the exact ground state for the
simple harmonic oscillator potential, and for nothing else. What is perhaps surprising is that the
result is only off by 30% or so for the attractive delta-function potential, even though the wave
function looks a lot different (solved in detail in Griffiths, page 258). Obviously, the Gaussian
family cannot be used if there is an infinite wall anywhere: one must find a family of wave
functions vanishing at the wall.

To gain some insight into what we’re doing, suppose the Hamiltonian H = p*/2m+V (F)has

n).

Since the Hamiltonian is Hermitian, these states span the space of possible wave functions,
including our variational family, so:

the set of (unknown to us) eigenstates
H|n)=E
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From this,
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for any |y, ). (We don’t need the denominator if we’ve chosen a family of normalized wave
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functions, as we did with the Gaussians above.) Evidently, minimizing M asa
(v.aly.a)

function of & gives us an upper bound on the ground state energy, hopefully not too far from the

true value.

We can see immediately that this will probably be better for finding for the ground state energy
than for mapping the ground state wave function: suppose the optimum state in our family is

actually |amm> =N (| 0> + 0.2| 1>) , with the normalization constant N = 0.98, a 20% admixture of

the first excited state. Then the wave function is off by of order 20%, but the energy estimate
will be too high by 0.04(E, - EO) usually a much smaller error.

To get some idea of how well this works, Messiah applies the method to the ground state of the
hydrogen atom. We know it’s going to be spherically symmetric, so it amounts to a one-
dimensional problem: just the radial wave function. Using standard notation,

a,=h’>/me’, E,=me* /20*, p=r/a,

and for a trial wave function u

ran
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(we’re going to take u real).
Messiah tries three families:
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and finds «,, =1, 7/4, 3/2 respectively. The first family, u;, includes the exact result, and
the minimization procedure finds it.



For the three families, then the energy of the best state is off by 0, 25%, 21% respectively.

The wave function error is defined as how far the square of the overlap with the true ground state
2
:0, 0.21, 0.05.

Notice here that our hand waving argument that the energies would be found much more
accurately than the wave functions comes unstuck. The third family has far better wave function
overlap than the second, but only a slightly better energy estimate. Why? A key point is that the
potential is singular at the origin, there is a big contribution to potential energy from a rather
small region, and the third family wave function is the least accurate of the three there. The
second family functions are very inaccurate at large distances: the expectation value

<r> =1.5a,,0,1.66a, for the three families. But at large distances, both kinetic and potential

wave function falls short of unity. For the three families, & =1 —|<1//0 7

energies are small, so the result can still look reasonable. These examples reinforce the point
that the variational method should be used cautiously.

Variational Method for Higher States

In some cases, the approach can be used easily for higher states: specifically, in problems having
some symmetry. For example, if the one dimensional attractive potential is symmetric about the
origin, and has more than one bound state, the ground state will be even, the first excited state
odd. Therefore, we can estimate the energy of the first excited state by minimizing a family of

odd functions, such as y (x,a) = (x/;/2053/2 ))ce‘”‘“”2/2 :

Ground State Energy of the Helium Atom by the Variational Method

We know the ground state energy of the hydrogen atomis 1 Ryd, or 13.6 ev. The He" ion has
Z =2, so will have ground state energy, proportional to Z*, equal to 4 Ryd. Therefore for the
He atom, if we neglect the electron-electron interaction, the ground state energy will be 8 Ryd,

109 ev., the two electrons having opposite spins will both be in the lowest spatial state.
Actually, experimentally, the He atom ground state energy is only 79 ev, because the repulsion
between the electrons loosens things.

To get a better value for the ground state energy still using tractable wave functions, we change
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the wave functions from the ionic wave function (Z *) ﬁag) e’ withZ=2 to
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(Z oy ﬁag) e ?"“ with Z' now a variable parameter. In other words, we are trying to allow for

the electron-electron repulsion, which must push the wave functions out a bit, by keeping exactly
the same shaped wave function but lessening the effective nuclear charge as reflected in the
spread of the wave function from Z to Z', and we’ll determine Z' by varying it to find the
minimum total energy, including the term from electron-electron repulsion.

To find the potential energy from the nuclear-electron interactions, we of course use the actual
nuclear charge Z = 2, but the Z' wave function, so the nuclear P.E. for the two electrons is:



PE.=-2Ze T zdr Z'3/7m0) 27/ a
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=-8Z'Ryd (Z = 2).

This could have been figured out from the formula for the one-electron ion, where the potential
energy for the one electron is 27 Ryd, one factor of Z being from the nuclear charge, the other
from the consequent shrinking of the orbit.

The kinetic energy is even easier: it depends entirely on the shape of the wave function, not on
the actual nuclear charge, so for our trial wave function it has to be Z* Ryds per electron.

The tricky part is the P.E. for the electron-electron interaction. This is positive.

Each electron has a wave function (Z ? ) ra; )1/2 e ?"'“ a spherical charge probability

distribution.

Denoting charge probability density by p(r) , we need
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This integral must be done in two stages:
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The result is  (5/4)Z" (see Messiah page 691).

Collecting terms, the total energy (for Z = 2) is:
E=-2(42'-7"-3Z') Ryd

and this is minimized by taking Z'=2-2, giving an energy of 77.5 ev, off the true value by

about 1 ev, so indeed the presence of the other electron is taken care of as far as total energy is
concerned by shielding the nuclear charge by an amount (5/16)e.



