\documentstyle[10pt]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %TCIDATA{Created=Thu Sep 18 08:04:32 1997} %TCIDATA{LastRevised=Thu Sep 14 13:33:17 2000} %TCIDATA{Language=American English} \topmargin=-0.5in \parskip=0 \baselineskip \parindent=.5in \oddsidemargin=0truein \topmargin -.6truein \textheight 9.0in \textwidth 6.5in %\input{tcilatex} \thispagestyle{empty} \begin{document} \hfill {\Large Phys 861, Fall 2000} \noindent {\huge Specific heat of electrons in metals} \bigskip Use $c=T\partial s/\partial T$, where $s$ is the entropy per unit volume. Start from \[ s=-k_{B}\int g({\cal E})\left( f\,\ln f+(1-f)\,\ln (1-f)\right) d{\cal E} \] where $g({\cal E})$ is the density of levels and $f$ is the Fermi function \[ f(x)=\frac{1}{e^{x}+1}\quad \quad \quad {\rm with\quad }x=\frac{{\cal E-\mu }% }{k_{B}T} \] Note in passing that $s$ vanishes for $T\rightarrow 0$, as it should, because $f$ is either $0$ or 1 in that limit. Then \[ \left( \frac{\partial s}{\partial T}\right) _{\mu }=-k_{B}\int g({\cal E}% )\ln \left( \frac{f}{1-f}\right) \,\frac{\partial f}{\partial T}\,d{\cal E} \] Use $\dfrac{f}{1-f}=e^{-x}$ and $\dfrac{\partial f}{\partial T}=\dfrac{% \partial f}{\partial x}\dfrac{\partial x}{\partial T}=-\dfrac{\partial f}{% \partial x}\dfrac{x}{T}$ to obtain \begin{equation} \left( \frac{\partial s}{\partial T}\right) _{\mu }=-k_{B}\int g({\cal E}% )\,x^{2}\,\frac{\partial f}{\partial x}\,\frac{d{\cal E}}{T} \label{exact} \end{equation} This formula is still exact. Now note that \[ -\frac{\partial f}{\partial x}=\frac{e^{-x}}{\left( e^{-x}+1\right) ^{2}} \] is strongly peaked at ${\cal E}=\mu $ when $k_{B}T\ll \mu $. Then, in this limit, \[ \frac{\partial s}{\partial T}=k_{B}^{2}\,g(\mu )\int_{-\infty }^{\infty }\,% \frac{x^{2}e^{-x}\,dx}{\left( e^{-x}+1\right) ^{2}}\,dx \] The exact value of the integral is $\pi ^{2}/3$. At low $T$, one can replace $\,g(\mu )$ with $g({\cal E}_{F})$, where ${\cal E}_{F}$ is the value of $% \mu $ at $T=0$. Then $c=\gamma T$ (at constant $\mu $) and also $s=\gamma T$% , with \[ \gamma =\left( \frac{\pi ^{2}}{3}\right) k_{B}^{2}\,g({\cal E}_{F}) \] For a gas of non-relativistic free electrons in 3d, substitute from AM's eq. (2.65), \[ g({\cal E}_{F})=\frac{3}{2}\frac{n}{{\cal E}_{F}} \] To get higher order terms from Eq. (\ref{exact}), insert the Taylor series $g(% {\cal E})=\sum_{p}g^{(p)}(\mu )({\cal E}-\mu )^{p}/p!=$ $\sum_{p}\left( k_{B}T\right) ^{p}g^{(p)}(\mu )x^{p}/p!$ and look up in Arfken and Weber the values of \begin{equation} \int_{-\infty }^{\infty }\,\frac{x^{2+p}e^{-x}\,dx}{\left( e^{-x}+1\right) ^{2}} \end{equation} for even $p$ (the odd values of $p$ give 0). \end{document}