1 Review of second quantization for electrons

a. Field operators

Consider a system of electrons, or more generally of identical fermions having
spin —; . By de nition, the creation operator €}, creates (and the annihilation
operator €y, annihilates) a particle of momentum kk and spin % ("' or #). If jOi
is the vacuum state,
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The “eld operators ﬂ%(r) and ﬂ%(r) are de ned as
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We have used normalization in a ~nite box of volume V. From (1) and (3), it

follows that R}g(r) creates a particle of spin % at point r, or R}g(r)jOi = jrii.
The anticommutation relations
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imply, in particular, that ¢Y,, = 0and (6s)* = 0, meaning that itis im-
possible to have two particles, or two holes, with the same spin and momentum.
Thus the exclusion principle is built into the relations (4).
From egs. (2)-(5) it follows that

Ry (r)Rys(r) + Ryp(r)Ay(r) = 0 Ry (NA(rY) + R (r)RY(r) =0 (6)
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b. Density and density “uctuation operators

All operators of interest can be expressed in terms of Ay, (r) and R}Z(r), or
equivalently in terms of €y, and €},,. When an operator is expressed in terms of
the ~eld operators, it is said to be in second-quantized form. There is a general
prescription for doing so, but often one can guess what the second-quantized
form of a familiar operator should be, and then con rm the guess by checking
that it gives all the correct matrix elements for a complete set of states. It
is instructive to work out explicitly some of the cases of interest to us. For



instance, we reasonably guess that the second-quantized form of the number
density operator will be
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To con rm our guess, we compare %(r) with the usual number density operator
for an N -particle system:
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where fig is the position operator for the ®-th particle. We show below that, for
a system containing N particles, %(r) is equivalent to (f; ;N 1).
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Proof of the equivalence between (6) and (7) -
Instead of working with X(r) , we introduce its Fourier transform, the density
°uctuation operator
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which will be useful later. Analogously, we de ne
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The e®ect of %y on a state describing N free particles is to produce the
sum of all possible states in which the momentum of one of the particles has
been decreased by hq. Clearly the operator (11) has precisely the same e®ect.
But any state can be written as a linear combination of free-particle states.
Therefore, for N particles, the two operators are equivalent. Since the second-
quantized form (10) is valid for all N, it encompasses all the operators (11)

(each of which is restricted to a speci ¢ N).

We will in the following use an equal sign to denote this type of equivalence
between an operator and its second-quantized form. However, as we see from
the above example, the second-quantized form of an operator applies to systems
with any number of particles. Often it is convenient to consider a variable
number of particles: for instance, it is advantageous to do statistical physics in
the grand canonical ensemble. In these cases the second-quantized formalism is
the natural one.

The operator that gives the total number of particles is
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Note that N is the same as %q for g = 0 and that, more generally, % is
dimensionless, while %(r) has dimensions of inverse volume.
c. External potential energy and kinetic energy operators

In an external potential U (r), the potential energy is
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The kinetic energy can obviously be written
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Using the inverse of eq. (2),
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d. Interaction potential energy operator
We start from
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Using the last of the anticommutation relations (??) we nd
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and “nally, using again anticommutation,
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To express ¥ in terms of ¢ and & operators insert
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Suppose now that V (r; r% depends only on r j r’. Put
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We can check that d3rd3r? = d3Rd3s. The integral over R gives
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This means that, if we put p = k+ g, the sum over p’ reduces to the term
p' =k’ § g. We obtain then
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where Z
V(g)= d3sef'dSv(s):

e. Equations of motion

The evolution of any operator & is of course given by the Heisenberg equation
ihed=0t = 01 § RO

If the Hamiltonian ¥ is of the general form (from Eqgs. (13), (17), and (18)
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where V (r; r’) is the interparticle potential and U(r) is the external potential,
the Heisenberg equation for Ay, (r) takes the form
Z
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Amazingly, this looks just like the one-particle Schradinger equation, although
%(r;t) is a —eld operator, not a wave function, and the e®ective potential

dBrPAI)V (r; r') depends non-linearly on Ay (r).

f. The particle current and the continuity equation
Using eq. (25) and its Hermitian conjugate equation for K}Z(r; t), we obtain,
as in elementary quantum mechanics:
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If we de ne the current density operator as
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we obtain
0R=et+ r¢d =o: (24)
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Since %(r;t) = h(r; )i and J(r;t) = 3(r;t) , where the expectation value
is taken over any initial state or ensemble of states, we have established the
continuity equation @%=@t+ r ¢ J = 0 under the most general conditions.
The current density “uctuation operator, analogously to eq. (9), is
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In particular, for g = 0; we have the total current
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Reference: G. Mahan, Many-particle Physics, Section 1.2.



