
1 Review of second quantization for electrons

a. Field operators

Consider a system of electrons, or more generally of identical fermions having
spin 1

2 . By de¯nition, the creation operator ĉy
k¾ creates (and the annihilation

operator ĉk¾ annihilates) a particle of momentum ¹hk and spin ¾ (" or #). If j0i
is the vacuum state,

ĉy
k¾ j0i = jk¾i with jk¾i = jki j¾i (1)

The ¯eld operators Ã̂¾(r) and Ã̂y
¾(r) are de¯ned as

Ã̂¾(r) =
X

k

hrjki ĉk¾ =
1p
V

X

k

eik¢r ĉk¾ (2)

Ã̂ y
¾(r) =

X

k

hkjri ĉy
k¾ =

1p
V

X

k

e¡ik¢r ĉy
k¾ (3)

We have used normalization in a ¯nite box of volume V . From (1) and (3), it
follows that Ã̂y

¾(r) creates a particle of spin ¾ at point r, or Ã̂y
¾ (r) j0i = jr¾i.

The anticommutation relations

ĉk¾ ĉk0¾0 + ĉk0¾ 0 ĉk¾ = 0 ĉy
k¾ ĉy

k0¾0 + ĉy
k0¾0 ĉy

k¾ = 0 (4)

ĉk¾ ĉy
k0¾ 0 + ĉy

k0¾0 ĉk¾ = ±kk0±¾¾0 (5)

imply, in particular, that
³
ĉy
k¾

´2
= 0 and (ĉk¾)2 = 0, meaning that it is im-

possible to have two particles, or two holes, with the same spin and momentum.
Thus the exclusion principle is built into the relations (4).

From eqs. (2)-(5) it follows that

Ã̂¾(r)Ã̂¾0(r0) + Ã̂¾0(r0)Ã̂¾(r) = 0 Ã̂y
¾(r)Ã̂y

¾ 0(r0) + Ã̂y
¾ 0(r0)Ã̂ y

¾(r) = 0 (6)

Ã̂¾(r)Ã̂y
¾0(r0) + Ã̂y

¾0(r0)Ã̂¾(r) = ±(r ¡ r0)±¾¾ 0 (7)

b. Density and density °uctuation operators

All operators of interest can be expressed in terms of Ã̂¾(r) and Ã̂y
¾ (r), or

equivalently in terms of ĉk¾ and ĉy
k¾. When an operator is expressed in terms of

the ¯eld operators, it is said to be in second-quantized form. There is a general
prescription for doing so, but often one can guess what the second-quantized
form of a familiar operator should be, and then con¯rm the guess by checking
that it gives all the correct matrix elements for a complete set of states. It
is instructive to work out explicitly some of the cases of interest to us. For
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instance, we reasonably guess that the second-quantized form of the number
density operator will be

½̂(r) =
X

¾

Ã̂y
¾ (r)Ã̂¾(r) =

1
V

X

k1k2¾

ei(k2¡k1)¢r ĉy
k1¾ ĉk2¾ (8)

To con¯rm our guess, we compare ½̂(r) with the usual number density operator
for an N -particle system:

½̂(̂r1; ::; r̂N ; r) =
NX

®=1

±(r ¡ r̂®) =
NX

®=1

X

k

1
V eik¢(r¡r̂®) (9)

where r̂® is the position operator for the ®-th particle. We show below that, for
a system containing N particles, ½̂(r) is equivalent to ½̂( r̂1; ::; r̂N ; r).
||||||||||||
Proof of the equivalence between (6) and (7) -

Instead of working with ½̂(r) , we introduce its Fourier transform, the density
°uctuation operator

½̂q =
Z

d3r e¡iq¢r ½̂(r) =
X

k¾

ĉy
k¡q¾ ĉk¾ (10)

which will be useful later. Analogously, we de¯ne

½̂q (̂r1; ::; r̂N ) =
Z

d3r e¡iq¢r ½̂(̂r1; ::;̂rN ; r) =
NX

®=1

e¡iq ¢̂r® (11)

The e®ect of ½̂q on a state describing N free particles is to produce the
sum of all possible states in which the momentum of one of the particles has
been decreased by ¹hq. Clearly the operator (11) has precisely the same e®ect.
But any state can be written as a linear combination of free-particle states.
Therefore, for N particles, the two operators are equivalent. Since the second-
quantized form (10) is valid for all N , it encompasses all the operators (11)
(each of which is restricted to a specī c N ).
||||||||||||

We will in the following use an equal sign to denote this type of equivalence
between an operator and its second-quantized form. However, as we see from
the above example, the second-quantized form of an operator applies to systems
with any number of particles. Often it is convenient to consider a variable
number of particles: for instance, it is advantageous to do statistical physics in
the grand canonical ensemble. In these cases the second-quantized formalism is
the natural one.

The operator that gives the total number of particles is

N̂ =
Z

d3r ½̂(r) =
X

k¾

ĉy
k¾ ĉk¾ (12)
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Note that N̂ is the same as ½̂q for q = 0 and that, more generally, ½̂q is
dimensionless, while ½̂(r) has dimensions of inverse volume.

c. External potential energy and kinetic energy operators

In an external potential U (r), the potential energy is

Û =
Z

d3rU (r) ½̂(r) =
1
V

X

k

U (k) ½̂¡k (13)

with
U(k) =

Z
d3rU (r)e¡ik¢r (14)

The kinetic energy can obviously be written

K̂ =
X

k¾

¹h2k2

2m
ĉy
k¾ ĉk¾ (15)

Using the inverse of eq. (2),

ĉk¾ =
1p
V

Z
d3r Ã̂¾(r)e¡ik¢r (16)

we also have

K̂ = ¡ ¹h2

2m

Z
d3r

X

¾

Ã̂y
¾(r)Ã̂¾(r) =

¹h2

2m

Z
d3r

X

¾

rÃ̂y
¾(r) ¢ rÃ̂¾(r) (17)

d. Interaction potential energy operator

We start from

V̂ =
1
2

X

®6=¯

V (r̂® ; r̂¯) =
1
2

2
4X

®¯

V (r̂®;̂r¯) ¡
X

®

V (̂r® ;̂r®)

3
5 =

1
2

2
4

Z
d3rd3r0 X

®

±(r ¡ r̂®)
X

¯

±(r0 ¡ r̂¯)V (r; r0) ¡
Z

d3r
X

®

±(r ¡ r̂®)V (r; r)

3
5 =

1
2

·Z
d3r d3r0 ½̂(r)½̂(r0)V (r; r0) ¡

Z
d3r ½̂(r)V (r; r)

¸
=

1
2

"Z
d3rd3r0 X

¾¾ 0
Ã̂y

¾(r)Ã̂¾(r)Ã̂y
¾ 0(r0)Ã̂¾0 (r0)V (r; r0) ¡

Z
d3r

X

¾

Ã̂y
¾(r)Ã̂¾ (r)V (r; r)

#

(18)
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Using the last of the anticommutation relations (??) we ¯nd

V̂ = ¡1
2

Z
d3rd3r0 X

¾¾ 0

Ã̂y
¾(r)Ã̂ y

¾ 0(r0)Ã̂¾(r)Ã̂¾ 0(r0)V (r;r0) (19)

and ¯nally, using again anticommutation,

V̂ =
1
2

Z
d3rd3r0 X

¾¾ 0
Ã̂y

¾ (r)Ã̂y
¾0 (r0)Ã̂¾0(r0)Ã̂¾ (r)V (r; r0) (20)

To express V̂ in terms of ĉ and ĉy operators insert

Ãy
¾(r) =

1
V

X

p

e¡ip¢r ĉy
p¾ Ãy

¾0(r0) =
1
V

X

p0
e¡ip0¢r0

ĉy
p0¾0

Ã̂¾(r) =
1
V

X

k

eik¢r ĉk¾ Ã̂¾ 0(r0) =
1
V

X

k0
eik0¢r0

ĉk0¾0

Suppose now that V (r; r0) depends only on r ¡ r0. Put

r = R +
1
2
s r0 = R ¡ 1

2
s (21)

or R =
1
2

(r + r0) s = r ¡ r0

We can check that d3rd3r0 = d3Rd3s. The integral over R gives
Z

d3Rei(k+k0¡p¡p0)¢R = V±k+k0¡p¡p0

This means that, if we put p = k + q, the sum over p0 reduces to the term
p0 = k0 ¡ q. We obtain then

V̂ = 1
2V

X

kk0q

X

¾¾ 0

ĉy
k+q¾ ĉy

k0¡q¾0 ĉk0¾ 0 ĉk¾; (22)

where
V (q) =

Z
d3s e¡iq¢sV (s):

e. Equations of motion

The evolution of any operator Ô is of course given by the Heisenberg equation

i¹h@Ô=@t = ÔĤ ¡ ĤÔ

If the Hamiltonian Ĥ is of the general form (from Eqs. (13), (17), and (18)
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Ĥ = (¹h2=2m)
X

¾

Z
d3rrÃ̂y

¾ (r) ¢ rÃ̂¾(r)+

1
2

X

¾¾ 0

Z
d3r d3r0Ã̂y

¾(r)Ã̂y
¾0(r0)V (r; r0)Ã̂¾0(r0)Ã̂¾ (r)

+
X

¾

Z
d3r Ã̂y

¾(r)U(r)Ã̂¾ (r) (23)

where V (r; r0) is the interparticle potential and U(r) is the external potential,
the Heisenberg equation for Ã̂¾(r) takes the form

i¹h@Ã̂¾ (r; t)=@t = ¡(¹h2=2m)r2Ã̂¾(r; t)+
Z

d3r0 ½̂(r0; t)V (r; r0)Ã̂¾(r;t)+U (r)Ã̂¾(r; t)

Amazingly, this looks just like the one-particle SchrÄodinger equation, although
Ã̂¾(r; t) is a ¯eld operator, not a wave function, and the e®ective potentialR

d3r0Ã̂(r0)V (r; r0) depends non-linearly on Ã̂¾(r).

f. The particle current and the continuity equation
Using eq. (25) and its Hermitian conjugate equation for Ã̂y

¾(r; t), we obtain,
as in elementary quantum mechanics:

i¹h@½̂=@t = ¡(¹h2=2m)
X

¾

[r2Ã̂y
¾ ]Ã̂¾ ¡ Ã̂y

¾[r2Ã̂¾ ]

= ¡(¹h2=2m)
X

¾

r ¢
³
[rÃ̂y

¾]Ã̂¾ ¡ Ã̂y
¾[rÃ̂¾ ]

´

If we de¯ne the current density operator as

Ĵ(r; t) = (i¹h=2m)
X

¾

³
[rÃ̂y

¾(r; t)]Ã̂¾ (r; t) ¡ Ã̂y
¾(r; t)[rÃ̂¾ (r; t)]

´

we obtain
@Ã̂=@t + r ¢ Ĵ = 0: (24)

Since ½(r; t) = h½̂(r; t)i and J(r; t) =
D
Ĵ(r; t)

E
, where the expectation value

is taken over any initial state or ensemble of states, we have established the
continuity equation @½=@t + r ¢ J = 0 under the most general conditions.

The current density °uctuation operator, analogously to eq. (9), is

Ĵq =
Z

d3r e¡iq¢r Ĵ(r) =
X

k¾

(¹h=m)(k + q=2)ĉy
k¾ ĉk+q¾
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In particular, for q = 0; we have the total current

Ĵ0 =
Z

d3r Ĵ(r) =
X

k¾

(¹hk=m)ĉy
k¾ ĉk+q¾

Reference: G. Mahan, Many-particle Physics, Section 1.2.
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