Homework on ep Scattering and Ronsbluth Cross Section

Level 1

1) Demonstrate that for elastic scattering from the proton:

$$\int \frac{d^3 P_X}{2E_X} \, \delta^4(q + P - P_X) = \delta((P + q)^2 - M^2) \tag{1}$$

How does the equation transform for inelastic scattering?

2) Demonstrate that the following relation for the incident flux in the reaction $1+2 \rightarrow 3+4$:

$$F = ((p_1 p_2)^2 - m_1^2 m_2^2)^{1/2} = v_1 2E_1 2E_2$$

is valid in the laboratory system.

Level 2

1) The most general form of the nucleon electromagnetic current in elastic scattering is:

$$\Gamma_{\mu} = \Gamma_1(Q^2)\gamma_{\mu} + \Gamma_2(Q^2)\frac{i}{2}\sigma_{\mu\nu}q^{\nu} + \Gamma_3(Q^2)q_{\mu}$$

Demonstrate that because of current conservation, $\Gamma_3(Q^2) = 0$.

- 2) Compare once more the duration of the γ^*p interaction with the duration of the partonic interactions inside the proton (as the inverse of the energy fluctuation), in the IMF.
- (1) What is the role of the IMF?
- (2) What is the role of time dilation?
- (3) What is the role of the kinematical variables: x, ν and Q^2 ?
- (4) At this stage, can one figure out any role of space contraction? Write half to one page.