%% This document created by Scientific Word (R) Version 2.0 \documentclass[12pt]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{sw20jart} %TCIDATA{TCIstyle=Article/ART4.LAT,jart,sw20jart} \input tcilatex \addtolength{\topmargin}{-0.8in} \addtolength{\oddsidemargin}{-0.4in} \addtolength{\textheight}{1.2in} \addtolength{\textwidth}{0.8in} \thispagestyle{empty} \QQQ{Language}{ American English } \begin{document} \section{\textbf{Hypergeometric functions and elliptic integrals}} For the calculation of the fields of loops and coils, and of their capacitance and inductance, we need certain combinations of the complete elliptic integrals $K$ and $E$, which are related to hypergeometric functions of the type $F(a,b,m;z)$, where $a$ and $b$ are half-integers and $% m$ is an integer. The general formula for the hypergeometric series \begin{equation} F(a,b,c;z)=\sum_{n=0}^\infty \frac{\Gamma (n+a)}{\Gamma (a)}\frac{\Gamma (n+b)}{\Gamma (b)}\frac{\Gamma (c)}{\Gamma (n+c)}\frac{z^n}{n!} \label{Hs} \end{equation} gives \begin{equation} F(a,b,1;z)=\sum_{n=0}^\infty \frac{\Gamma (n+a)}{n!\Gamma (a)}\frac{\Gamma (n+b)}{n!\Gamma (b)}\;z^n \label{H1} \end{equation} where \[ \frac{\Gamma (n+a)}{n!\Gamma (a)}=\binom{n+a-1}n \] and in particular \[ \frac{\Gamma (n+\frac 12)}{n!\Gamma (\frac 12)}=\binom{n-\frac 12}n=\frac{% 1\cdot 3\,\cdots \,(2n-1)}{2\cdot 4\,\cdots \,2n}=\frac{\left( 2n\right) !}{% 2^{2n}\left( n!\right) ^2} \] \[ \frac{\Gamma (n-\frac 12)}{n!\Gamma (-\frac 12)}=\binom{n-\frac 32}n=-\frac{% 1\cdot 3\,\cdots \,(2n-3)}{2\cdot 4\,\cdots \,2n}=-\frac 1{2n-1}\binom{% n-\frac 12}n \] for $n>0$ (The $n=0$ term in the series for $F$ is equal to $1$). The complete elliptic integral of the first kind is by definition: \begin{equation} K(k^2)=\int_0^{\pi /2}\frac{d\varphi }{\sqrt{1-k^2\sin ^2\varphi }} \label{K} \end{equation} and the complete elliptic integral of the second kind is \begin{equation} E(k^2)=\int_0^{\pi /2}\sqrt{1-k^2\sin ^2\varphi }\,d\varphi \label{E} \end{equation} From the integral representation \begin{equation} F(a,b,c;z)=\frac{\Gamma (c)}{\Gamma (b)\Gamma (c-b)}% \int_0^1t^{b-1}(1-t)^{c-b-1}(1-tz)^{-a}dt \label{Hi} \end{equation} (putting $t=\sin ^2\phi $) one can derive the basic relations: \begin{equation} K(z)=\frac \pi 2\,F(\frac 12,\frac 12,1;z)=\frac \pi 2\left[ 1+\sum_{n=1}^\infty \binom{n-\frac 12}n^2z^n\right] \label{Kh} \end{equation} \begin{equation} E(z)=\frac \pi 2\,F(-\frac 12,\frac 12,1;z)=\frac \pi 2\left[ 1-\sum_{n=1}^\infty \binom{n-\frac 12}n^2\frac{z^n}{2n-1}\right] \label{Eh} \end{equation} \subsection{Expansion of $(K-E)/z$ and of $A_\phi $ for a loop} Directly by subtraction of (\ref{Eh}) from (\ref{Kh}): \begin{equation} \frac{K-E}z=\frac \pi 2\sum_{n=1}^\infty \binom{n-\frac 12}n^2\frac{2n}{2n-1}% \;z^{n-1} \label{KE} \end{equation} Alternatively, from one of the ``contiguity relations'' \[ F(\frac 12,\frac 12,1;z)-F(-\frac 12,\frac 12,1;z)=\frac z2\,F(\frac 12,\frac 32,2;z) \] so that \begin{equation} \frac{K-E}z=\frac \pi 4\,F(\frac 12,\frac 32,2;z) \label{KE1} \end{equation} Since \[ F(\frac 12,\frac 32,2;z)=\sum_{n=0}^\infty \frac{\Gamma (n+\frac 12)}{% n!\Gamma (\frac 12)}\frac{\Gamma (n+\frac 32)}{\left( n+1\right) !\Gamma (\frac 32)}\;z^n \] and \[ \frac{\Gamma (n+\frac 32)}{\left( n+1\right) !\Gamma (\frac 32)}=\frac{% (n+\frac 12)\Gamma (n+\frac 12)}{\frac 12\left( n+1\right) n!\,\Gamma (\frac 12)}=\frac{2n+1}{n+1}\binom{n-\frac 12}n \] we find \begin{equation} \frac{K-E}z=\frac \pi 2\sum_{n=0}^\infty \binom{n-\frac 12}n^2\frac{2n+1}{% 2n+2}\;z^n \label{KE2} \end{equation} This is equivalent to (\ref{KE}) because the sum in that equation can be rewritten as \[ \sum_{n=0}^\infty \binom{n+\frac 12}{n+1}^2\frac{2n+2}{2n+1}\;z^n\,\text{% \quad \quad with\quad \quad }\binom{n+\frac 12}{n+1}=\binom{n-\frac 12}n% \frac{2n+1}{2n+2} \] The vector potential of a loop is \[ A_\phi (r,\theta )=\frac{4Ia}{c\sqrt{a^2+r^2+2ar\sin \theta }}\left[ 2\,% \frac{K(z)-E(z)}z-K(z)\right] \] with \[ z=\frac{4ar\sin \theta }{a^2+r^2+2ar\sin \theta } \] Using eqs. (\ref{KE2}) and (\ref{KH}) we easily find \[ 2\,\frac{K(z)-E(z)}z-K(z)=\frac \pi 2\sum_{n=1}^\infty \binom{n-\frac 12}% n^2\frac n{n+1}\,z^n \] \subsection{Expansion of $E/(1-z)$} Using \[ F(a,b,1;z)=(1-z)^{1-a-b}F(1-a,1-b,1;z) \] with $a=-\frac 12$ and $b=\frac 12$ , we find \begin{equation} \frac E{1-z}=\frac \pi 2\,F(\frac 32,\frac 12,1;z) \label{E1} \end{equation} and, using \[ \frac{\Gamma (n+\frac 32)}{n!\Gamma (\frac 32)}=\binom{n+\frac 12}n=\frac{% 3\cdot 5\,\cdots \,(2n+1)}{2\cdot 4\,\cdots \,2n}=(2n+1)\binom{n-\frac 12}n, \] we obtain \begin{equation} \frac E{1-z}=\frac \pi 2\sum_{n=0}^\infty \binom{n-\frac 12}n^2\left( 2n+1\right) \;z^n\, \label{E2} \end{equation} \subsection{Expansion of the inductance} Combining the results (\ref{KE2}) and (\ref{E2}): \[ \frac{K-E}z+\frac E{1-z}=\frac \pi 2\sum_{n=0}^\infty \binom{n-\frac 12}n^2% \frac{\left( 2n+1\right) \left( 2n+3\right) }{2n+2}\;z^n \] Equivalently, (\ref{KE1}) and (\ref{E1}) give: \[ \frac{K-E}z+\frac E{1-z}=\frac \pi 2\left[ F(\frac 32,\frac 12,2;z)+\frac 12\,F(\frac 32,\frac 12,1;z)\right] \] Using AS , this formula can be rewritten as \[ \frac{K-E}z+\frac E{1-z}=\frac{3\pi }4\,F(\frac 52,\frac 12,2;z) \] with \[ F(\frac 52,\frac 12,2;z)=\sum_{n=0}^\infty \frac{\Gamma (n+\frac 52)}{\left( n+1\right) !\Gamma (\frac 52)}\frac{\Gamma (n+\frac 12)}{n!\Gamma (\frac 12)}% \;z^n=\sum_{n=0}^\infty \binom{n-\frac 12}n^2\frac{\left( 2n+3\right) \left( 2n+1\right) }{3\left( n+1\right) }\;z^n \] Using the transformation formula \[ F(a,b,c;z)=(1-z)^{-b}F\left( b,c-a,c;\frac z{z-1}\right) \] and putting \[ z=\frac{x^2}{1+x^2}\quad \text{so that \quad }\frac z{z-1}=-x^2\text{,} \] where $x=2a/l$ (ratio of solenoid diameter to length), we have finally \begin{eqnarray*} \frac 4{3\pi }\sqrt{1-z}\,\left( \frac{K-E}z+\frac E{1-z}\right) &=&\,F(\frac 12,-\frac 12,2;-x^2) \\ &=&1-\sum_{n=1}^\infty \binom{n-\frac 12}n^2\frac{\left( -x^2\right) ^n}{% (n+1)(2n-1)} \end{eqnarray*} As a check, the leading terms are: \[ 1+\frac 12\left( \frac x2\right) ^2-\frac 14\left( \frac x2\right) ^4+\frac 5{16}\left( \frac x2\right) ^6-\frac{35}{64}\left( \frac x2\right) ^8+\frac{% 147}{128}\left( \frac x2\right) ^{10}+\cdots \] Then the inductance of a finite solenoid is $Lf,$ where $L$ is computed neglecting end effects ($L=(4\pi /c^2)N^2\pi a^2/l$) and \[ f=F(\frac 12,-\frac 12,2;-x^2)-\frac{4x}{3\pi } \] \[ F(\left( \frac x2\right) )=1-\frac{8\left( \frac x2\right) }{3\pi }+\frac 12\left( \frac x2\right) ^2-\frac 14\left( \frac x2\right) ^4+\frac 5{16}\left( \frac x2\right) ^6-\frac{35}{64}\left( \frac x2\right) ^8+\frac{% 147}{128}\left( \frac x2\right) ^{10} \] $-\sum_{n=6}^{10}\binom{n-\frac 12}n^2\frac{\left( -4x^2\right) ^n}{% (n+1)(2n-1)}=-\frac{693}{256}x^{12}+\frac{14157}{2048}x^{14}-\frac{306735}{% 16384}x^{16}+\frac{1738165}{32768}x^{18}+O\left( x^{20}\right) $ $\frac 12x^2-\frac 14x^4+\frac 5{16}x^6-\frac{35}{64}x^8+\frac{147}{128}% x^{10}-\frac{693}{256}x^{12}+\frac{14157}{2048}x^{14}-\frac{306735}{16384}% x^{16}+\frac{1738165}{32768}x^{18}+O\left( x^{20}\right) $ $16384/256=64$ and $32768/2048=16$ $\binom{n-\frac 12}n=\frac{\left( 2n\right) !}{2^{2n}\left( n!\right) ^2}$ and $\binom{7-\frac 12}7=\frac{\left( 14\right) !}{2^{14}\left( 7!\right) ^2} $ is true $\frac{150!}{2^{150}\left( 75!\right) ^2}=\frac{% 580\,16293\,58544\,29935\,61866\,13429\,53782\,01212\,57345}{% 8920\,29807\,94122\,49256\,61428\,73090\,59344\,60239\,21664}$ and $8920\,29807\,94122\,49256\,61428\,73090\,59344\,60239\,21664/1024^{15}=% \frac 1{16}$ and $580\,16293\,58544\,29935\,61866\,13429\,53782\,0121257345/3^2=$ $64\,46254\,84282\,69992\,84651\,79269\,94864\,66801\,39705/5=$ $12\,89250\,96856\,53998\,56930\,35853\,98972\,93360\,27941/7=$ $1\,84178\,70979\,50571\,22418\,62264\,85567\,56194\,32563/11=$ $16743\,51907\,22779\,20219\,87478\,62324\,32381\,30233/13=$ $1287\,96300\,55598\,40016\,91344\,50948\,02490\,86941/19=$ $67\,78752\,66084\,12632\,46912\,86892\,00131\,09839/41=$ $1\,65335\,43075\,22259\,32851\,53338\,82930\,02679/43=$ $3845\,01001\,74936\,26345\,38449\,74021\,62853/47=$ $81\,80872\,37764\,60135\,00818\,07957\,90699/79=$ $1\,03555\,34655\,24811\,83554\,65923\,51781/83=$ $1247\,65477\,77407\,37151\,26095\,46407/89=$ $14\,01859\,30083\,22889\,34001\,07263/97=14452\,15774\,05390\,61175% \,26879/101=$ $143\,09067\,06984\,06546\,28979/103=1\,38922\,98126\,05888\,79893/107=$ $1298\,34561\,92578\,39999/109=11\,91142\,76996\,13211/113=$ $10541\,08645\,98347/7=1505\,86949\,42621/11=136\,89722\,67511/127=$ $1\,07793\,09193/131=82284803/137=600619/139=4321/149=29$ \end{document}