
2. Ch. 1, part 2

Lecture 2:
Electrostatic energy, Green’s theorem
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2.1. Electrostatic energy

The work required to bring the charge qi from infinity to the point xi in the presence of
existing charges q1; : : : ; qi¡1 is

Wi = qi
i¡1X

j=1

qj
jxi¡xjj

The total work required to assemble N charges is then:

WN =
NX

i=2

qi
i¡1X

j=1

qj
jxi¡xjj

Each pairwise interaction appears once in this double sum. If we sum over i and j
independently, but exclude i = j, each pair is counted twice. Thus we can also write

WN =
1

2

X

i 6=j

qiqj
jxi¡xj j

(2.1)

Going to a continuum distribution, we have no way to exclude the interaction of an
infinitesimal charge element with itself. So we leave it in and write:

W =
1

2

ZZ ½(x)½(x0)

jx¡ x0j d
3x d3x0 (2.2)

.
For a smooth three dimensional charge distribution, the interaction of a charge element

with the nearby charges is

1

2
½(x) d3x

Z

V

½(x0)

jx¡ x0j d
3x0 ¼ V2=3½2(x) d3x

and vanishes for V ! 0. So the self-interaction does not contribute and the formula (2.2)
is correct, unless ½(x) contains a point charge, or even a line charge. At the macroscopic
level the charge distributions always have a finite extent, really, so there is no problem. At
the fundamental level, there is a problem if the elementary particles (leptons, quarks) are
truly point charges. Relativistic QED (quantum electrodynamics) deals with this difficulty
by postulating a simple negative term that cancels the infinite self-energy in W . Few people
believe that this “renormalization” procedure is the final word.

2.1.1. The field energy

One reason why we like eq. (2.2) is that it can be transformed to

W =
1

8¼

Z
jr©j2 d3x = 1

8¼

Z
jEj2 d3x (2.3)
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which shows that the work done in assembling the charges is stored as field energy. To get
this expression we rewrite eq. (2.2) as

W =
1

2

Z
½(x)©(x) d3x;

substitute ½(x) = ¡(1=4¼)r2©(x); and eliminate ©r2©(x) by using r ¢ (©r©) = ©r2©+
jr©j2. What we actually get is

W =
1

8¼

Z
jr©j2 d3x¡ 1

8¼

Z

S
©
@©

@n
da

So it seems that eq. (2.3) is obtained only if the integral is over all space and there are no
charges at infinity, or in special cases such as grounded conductors (© = 0) on the boundary
S. In practice, however, one can always find an S such that the boundary term vanishes or
is unimportant.

Eq. (2.3) is a fundamental result. It is very useful to think that there really is an energy
density

w =
jEj2
8¼

that resides in the field and is greater where the field is stronger. Note that the field energy
is always positive. A consequence of this is that

An assembly of charges cannot be in equilibrium under electrostatic forces alone.
We already noted that for point charges (2.1) is not the same as (2.2) or (2.3). For two

unlike charges, (2.1) is negative, while (2.3) is positive (and infinite). Jackson discusses this
point in greater detail.

2.2. Boundary values

A number of important relations can be obtained by fiddling around with the field energy
expression and related integrals. They are very useful to discuss the properties of the E field
in a confined geometry. Typically, the boundaries are made of conductors, each held at a
known potential, or carrying a known total charge. The problem is to find the charge density
¾ on the surface of each conductor and the field E in the space between them.

2.2.1. Green’s first identity
Z

V
(Ár2Ã +rÁ ¢rÃ) d3x =

I

S
Á
@Ã

@n
da (2.4)

This is obtained simply by integrating the identity

r ¢ (ÁrÃ) = Ár2Ã +rÁ ¢rÃ
and using the divergence theorem. It does not seem too interesting in itself, but it has many
uses. An important corollary is the following.
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Uniqueness theorem

The solution of Poisson’s equation is unique if © is given on the boundary (Dirichlet bound-
ary condition). It is unique up to an additive constant if @©=@n is given on the boundary
(Neumann boundary condition). It is also unique if the boundary conditions are Dirichlet on
part of the boundary, Neumann on the rest.

This is proven by assuming that there are two distinct solutions, ©1 and ©2, and showing
that U = ©1 ¡ ©2 must vanish. Just use 2.4 with Á = Ã = U

Z

V
(Ur2U +rU ¢rU) d3x =

I

S
U
@U

@n
da

and note that r2U = 0 in all V and that either U = 0 (Dirichlet) or @U=@n = 0 (Neumann)
on S. It follows that jrU j vanishes and U is constant in V . The constant must be zero in
the Dirichlet case, or for mixed boundary conditions, but is arbitrary in the pure Neumann
case.

———————————————
By a modification of this argument one can prove that, in charge-free space, the quantityR jrªj2 d3x is minimal, subject to the appropriate boundary conditions, when ª coincides

with the potential ©, solution of Laplace’s equation r2© = 0. See Jackson’s problem 1.14.
————————————————–

2.2.2. Green’s theorem and integral equations

Write down Green’s first identity for Á; Ã and Ã; Á:

Z

V
(Ár2Ã ¡rÁ ¢rÃ) d3x =

I

S
Á
@Ã

@n
da

Z

V
(Ãr2Á¡rÃ ¢rÁ) d3x =

I

S
Ã
@Á

@n
da

and subtract side by side. The result is Green’s second identity, or Green’s theorem:

Z

V
(Ár2Ã ¡ Ãr2Á) d3x =

I

S

Ã
Á
@Ã

@n
¡ Ã@Á

@n

!
da (2.5)

This gives a very useful formula if we choose

Ã =
1

R
=

1

jx¡ x0j

so that r2Ã = ¡4¼±(x¡ x0), and we identify Á with the potential ©. If x is inside V we get

¡4¼©(x0)¡
Z

V

1

R
r2© d3x =

I

S

Ã
©
@

@n

1

R
¡ 1

R

@©

@n

!
da
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Recalling that r2© = ¡4¼½ and interchanging the names of x and x0:

©(x) =
Z

V

½(x0)

R
d3x0 +

1

4¼

I

S

Ã
1

R

@©

@n0
¡©(x0) @

@n0
1

R

!
da0 (2.6)

There is a lot of mathematical physics in this equation:

² If V is all of space and there are no charges at infinity, it simply gives back Coulomb’s
law

©(x) =
Z

V1

½(x0)

R
d3x0

² If @©=@n is given on the boundary S (Neumann), we obtain an integral equation for ©
on S. This equation may be easier to solve than the original Poisson equation. Once
©(x) is known for x on S, it can be found everywhere by integration (in principle, if
not in practice).

² If © is given on the boundary S (Dirichlet), we can similarly get an integral equation
for @©=@n on S and then find ©(x) everywhere. The integral equation is

@©

@n

¯̄
¯̄
¯
S
=

Z

V
½(x0)

@

@n

1

R
d3x0 +

1

4¼

I

S

"Ã
@

@n

1

R

!
@©

@n0
¡©(x0) @2

@n@n0
1

R

#
da0

² These integral equations show that it is not possible to assign both © and @©=@n
arbitrarily on the boundary. Physically, S could be the surface of conductors which are
held at fixed potentials. The charges in these conductors shift about and determine
the surface charge density ¾, which is given by 4¼¾ = @©=@n. Note that n is directed
into the conductor (contrary to the usual practice).

² We can view (1=4¼)@©=@n as a surface charge density and ¡(1=4¼)© as a dipole layer
that cause, respectively, a discontinuity in the field and in the potential, in such a way
that © jumps to zero in crossing S.

S
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2.2.3. Green’s function

We can solve the boundary value problem anew for every ½(x), but there is a better way. Con-
sider for instance the Dirichlet case. We can construct the general solution if we can solve the
particular case when S is at zero potential and ½(x) is a unit point charge, ½(x) =±(x¡ x0).
This special solution G(x;x0) is the Green function. It obeys the equation

r2G(x;x0) = ¡4¼±(x¡ x0)
G(x;x0) = 0 when x is on S

Once G has been found (this is easier said than done), we can use Green’s theorem with
Ã = G and Á = © and proceed as in the derivation of eq.(2.6). In other words, simply write
G in place of 1=R in (2.6). What we find is an explicit expression for ©(x):

©(x) =
Z

V
G(x;x0)½(x0) d3x0 +

1

4¼

I

S
©(x0)

@G

@n0
da0 (2.7)

In particular, if © = 0 on S, we get

©(x) =
Z

V
G(x;x0)½(x0) d3x0

which is very much like Coulomb’s law. In fact, 1= jx¡ x0j is nothing but the Green function
for all space.

Similarly, one can define and use a Green function GN (x;x0) for Neumann boundary
conditions. Jackson discusses this case in detail.

If we put G = 1=R + F and we use r2G = ¡4¼±(x¡ x0) and r2(1=R) = ¡4¼±(x¡ x0),
we see that F satisfies Laplace’s equation r2F = 0 everywhere in V . We can regard F as
an electric potential due to (fictitious) charges located outside V . The idea is to continue F
and G across S as if they were not discontinuous at S. In some cases this approach leads to
a simple solution of the boundary value problem (method of images, Chapter 2).

———————————————
There are many applications of Green’s theorems. A useful one is the mean value theorem,

Jackson’s Problem 1.10 (assigned):
In charge-free space, ©(x) is equal to the average of © on any sphere centered at x.
A consequence of this is that ©(x) cannot have maxima or minima in charge-free space.

One could say that this is obvious, because in charge-free space © satisfies Laplace’s equation,
r2© = 0, which in cartesian coordinates is

@2©

@x2
+
@2©

@y2
+
@2©

@z2
= 0

so that it is impossible for all the second derivatives to have the same sign. However, the
mean value theorem shows that it is also impossible to have a point where all the second and
third derivatives vanish but all the fourth derivatives are positive, for instance.


