%% This document created by Scientific Word (R) Version 2.0 \documentclass[12pt,thmsa]{report} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{sw20jrep} %TCIDATA{TCIstyle=Report/report.lat,jrep,report} %TCIDATA{Created=Tue Sep 17 13:59:09 1996} %TCIDATA{LastRevised=Tue Sep 17 13:59:38 1996} %TCIDATA{Language=American English} \input tcilatex \pagestyle{myheadings} \markright{{\sf Radiation by a Localized Source}} \addtolength{\topmargin}{-0.4in} \addtolength{\textheight}{1in} \setcounter{secnumdepth}{0} \setcounter{chapter}{1} \thispagestyle{empty} \begin{document} \section{9.1\quad Radiation by a Localized Source.} \subsection{9.1.1} \quad \thinspace \textbf{a.} The treatment of radiating systems in this section is limited to sources describable in terms of their electric and magnetic dipole moments and their electric quadrupole moment. A more complete theory of multipolar expansions is given in Ch.16. \smallskip\ \textbf{b}. Jackson's formulae are all written for a source density \[ \rho (\mathbf{x,}t)=\func{Re}\left[ \rho (\mathbf{x,\,}\omega )e^{-i\omega t}\right] =\frac 12\left[ \rho (\mathbf{x,\,}\omega )e^{-i\omega t}+\rho ^{*}(\mathbf{x,\,}\omega )e^{i\omega t}\right] \] \begin{equation} \mathbf{J(x,}t)=\func{Re}\left[ \mathbf{J}(\mathbf{x,\,}\omega )e^{-i\omega t}\right] =\frac 12\left[ \mathbf{J}(\mathbf{x,\,}\omega )e^{-i\omega t}+% \mathbf{J}^{*}(\mathbf{x,\,}\omega )e^{i\omega t}\right] . \label{1} \end{equation} We shall follow his notation, although the factor $1/2$ is rather unfortunate. A general fourier expansion of the sources gives \[ \quad \quad \mathbf{J(x,}t)=\int_{-\infty }^{+\infty }\frac{d\omega ^{\prime }}{2\pi }\mathbf{J}(\mathbf{x,\,}\omega ^{\prime })e^{-i\omega ^{\prime }t}\quad \quad \text{for a continuous spectrum} \] or \[ \mathbf{J}(\mathbf{x,}t)=\sum_{n=-\infty }^\infty \mathbf{J}(\mathbf{x,\,}% \omega _n)e^{-i\omega _nt}\quad \quad \text{for a discrete spectrum.} \] (For a periodic source, $\omega _n=n\omega _1).$ The last formula suggests that, if we concentrate attention on a single frequency $\omega _n,$ we should write (using also $\mathbf{J}(\mathbf{x,\,-}\omega _n)=\mathbf{J}^{*}(% \mathbf{x,\,}\omega _n)$): \[ \mathbf{J}(\mathbf{x,\,}\omega _n)e^{-i\omega _nt}+\mathbf{J}^{*}(\mathbf{% x,\,}\omega _n)e^{i\omega _nt}\,. \] \smallskip\ \textbf{c. }This is the convention of Baym (formula (13.82)), while Jackson has an extra factor $1/2.$ In other words $\mathbf{J}^{Baym}=\frac 12\mathbf{% J}^{Jackson},$ and this holds for $\rho ,\mathbf{p,m,}$ etc. The factor of $% 2 $ comes from conventions, is \textsl{not} quantum-mechanical. \newpage \subsection{9.1.2} \quad \thinspace \textbf{a.} With the sinusoidal time dependence in (\ref{1}% ) understood, the solution for the vector potential in the Lorentz gauge gives \begin{equation} \mathbf{A(x,\,}\omega )=\frac 1c\int \mathbf{J}(\mathbf{x}^{\prime }\mathbf{% ,\,}\omega )\frac{e^{ik\left| \mathbf{x-x}^{\prime }\right| }}{\left| \mathbf{x-x}^{\prime }\right| }d^3x^{\prime } \label{2} \end{equation} with $k=\omega /c.$ \smallskip\ \textbf{b. }The magnetic field is $\mathbf{B=\nabla \times A}$ and the electric field outside the source is $\mathbf{E=(}i/k)\mathbf{\nabla \times B.}$ (This is of course for $\omega \neq 0).$ Proceeding in this way one does not need the scalar potential $\phi $ at all, except for the static field (Jackson, p. 394). \smallskip\ \textbf{c.} The multipole expansion is valid for $r>d$, where $d$ is a typical dimension of the source and $r=\left| \mathbf{x}\right| .$ \FRAME{dtbpF}{284.25pt}{116.375pt}{0pt}{}{}{Figure }{\special{language "Scientific Word";type "GRAPHIC";display "PICT";valid_file "T";width 284.25pt;height 116.375pt;depth 0pt;original-width 282.5625pt;original-height 142.375pt;cropleft "0";croptop "1";cropright "1";cropbottom "0";tempfilename 'f09-1-2.wmf';tempfile-properties "XP";}} It is based on the expansion (Jackson 16.22) of the Green function in spherical harmonics, valid for $r>r^{\prime },$% \begin{equation} \frac{e^{ik\left| \mathbf{x-x}^{\prime }\right| }}{\left| \mathbf{x-x}% ^{\prime }\right| }=4\pi ik\sum_{l=0}^\infty j_l(kr^{\prime })h_l(kr)\sum_{m=-l}^lY_{lm}^{*}(\theta ^{\prime },\varphi ^{\prime })Y_{lm}(\theta ,\varphi ) \label{3} \end{equation} where $j_l$ and $h_l$ are spherical Bessel and Hankel functions. \smallskip\ \textbf{d. }The expansion (\ref{3}) is not simply an expansion in powers of $% r^{\prime }/r.$ It reduces to such an expansion in the limit $kr\rightarrow 0 $ (which implies $kr^{\prime }\rightarrow 0).$ We have then \begin{equation} \frac{e^{ik\left| \mathbf{x-x}^{\prime }\right| }}{\left| \mathbf{x-x}% ^{\prime }\right| }\rightarrow \frac 1{\left| \mathbf{x-x}^{\prime }\right| }=4\pi \sum_{l=0}^\infty \frac{r^{\prime l}}{r^{l+1}}% \sum_{m=-l}^lY_{lm}^{*}(\theta ^{\prime },\varphi ^{\prime })Y_{lm}(\theta ,\varphi ). \label{4} \end{equation} This is the \textsl{near field} ($r\rightarrow 0)$ or \textsl{static} ($% \omega \rightarrow 0)$ case. \newpage \subsection{9.1.3} \quad \thinspace \textbf{a.} Another limit when simpler formulae are obtained is $kr\rightarrow \infty .$ Then all the Hankel functions $% h_{l}(kr),$ and therefore $\mathbf{A}$ itself, are simply proportional to $% \exp (ikr)/r.$ This occurs in the \textsl{far field} ( $r\rightarrow \infty ) $ or \textsl{radiation} zone. \smallskip\ \textbf{b. }Although the multipolar expansion can be used for sources of any size, it is really useful when $kr^{\prime }$ is also small for all $\mathbf{% x}^{\prime }$ contributing to the integral (\ref{2}), i.e. when $kd\ll 1,$ or $d\ll \lambda .$ The reason is twofold: first there is no near zone ($% kr\rightarrow 0)$ unless $kd\rightarrow 0$ (because $r>d);$ second a large number of multipoles contribute to the far field, unless $kd$ is small. If $% kd\ll 1,$ one can replace $j_l(kr^{\prime })$ by its leading term $% (kr^{\prime })^l/(2l+1)!!$ and the successive multipoles give contributions to the radiation field that are proportional to successive powers of $(kd).$ \smallskip\ \textbf{c. }It is possible to get a complete picture of the radiation field and a correct treatment of dipole (and electric quadrupole) terms without the full machinery based on (\ref{3}) and (\ref{4}). Simply use $\left| \mathbf{x-x}^{\prime }\right| \simeq r-\left( \mathbf{x/}r\right) \cdot \mathbf{x}^{\prime }$ and find to leading order, with $\mathbf{k=}k(\mathbf{% x/}r):$% \begin{equation} \frac{e^{ik\left| \mathbf{x-x}^{\prime }\right| }}{\left| \mathbf{x-x}% ^{\prime }\right| }=e^{ikr}e^{-i\mathbf{k\cdot x}^{\prime }}\left( \frac 1r+% \frac{\mathbf{x\cdot x}^{\prime }}{r^3}\right) \label{5} \end{equation} \smallskip\ \textbf{d. }In the radiation region we have, inserting the leading order of (% \ref{5}) in (\ref{2}) \begin{equation} \mathbf{A(x})=\frac{e^{ikr}}{cr}\int \mathbf{J}(\mathbf{x}^{\prime })e^{-i% \mathbf{k}\cdot \mathbf{x}^{\prime }}d^3x^{\prime } \label{6} \end{equation} The multipolar expansion of the radiation field for $kd\ll 1$ follows from the power series expansion of $\exp (-i\mathbf{k\cdot x}^{\prime }).$ \end{document}