

Introduction to
Computational

Physics
Reading Days Edition!

Welcome back!

 Remember that you can try out these programs using your
account on Galileo. For instructions on how to use Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll look at last week's practice problems, and work on a
new challenge together.

Let's get started!

 int i;
 int j;
 int sum;
 int nproblems;
 int nright = 0;
 srand(time(NULL));
 for (nproblems = 0; nproblems < 10; nproblems++) {
 i = 100.0 * rand()/(double)RAND_MAX;
 j = 100.0 * rand()/(double)RAND_MAX;
 printf("What is %d + %d ?: ",i,j);
 scanf("%d",&sum);
 if (i+j == sum) {
 printf("Right!\n");
 nright++;
 } else {
 printf("Nope. The sum is %d. Go back to school.\n", i+j);
 }
 }
 printf("Your score is %d / %d (%lf %%)\n",
 nright,
 nproblems,
 nright*100.0/nproblems);

Last Week's Practice Problem #1:

I asked if you could modify the �math
practice� program to make it keep
score. Here's one way to do that:

I asked if you could modify the �math
practice� program to make it keep
score. Here's one way to do that:

Literal percent sign.Literal percent sign.

Note that I've omitted the �framework� of �int main ()�,
etc. around the program. You'll need to add it back
in to get a working program.

Note that we've just added a counter, �nright�, to
keep track of how many problems the user answers
correctly. Then at the end, the program prints out
this information in a useful way. Note that we've
used �%%� in the printf statement to cause it to print
a literal �%�. You need to do this because otherwise
printf thinks you've mistyped %d, %lf or some other
format specifier. By typing %% you're telling printf
�Yes, I really do want you to print out a percent sign.�

Last Week's Practice Problem #2:
 int i;
 int j;
 int sum;
 int nproblems;
 double flip; // Result of "coin flip".
 int answer;
 srand(time(NULL));
 for (nproblems = 0; nproblems < 10; nproblems++) {
 i = 100.0 * rand()/(double)RAND_MAX;
 j = 100.0 * rand()/(double)RAND_MAX;
 flip = rand()/(double)RAND_MAX; // Flip coin.
 if (flip < 0.5) {
 printf("What is %d + %d ?: ",i,j);
 answer = i+j;
 } else {
 printf("What is %d - %d ?: ",i,j);
 answer = i-j;
 }
 scanf("%d",&sum);
 if (answer == sum) {
 printf("Right!\n");
 } else {
 printf("Nope. The sum is %d. Go back to school.\n", answer);
 }
 }

I also asked if you could randomly
choose addition or subtraction
problems. Here's one way to do that:

I also asked if you could randomly
choose addition or subtraction
problems. Here's one way to do that:

Note that I've omitted the �framework� of �int main ()�, etc.
around the program. You'll need to add it back in to get a
working program.

Here, I've used a random number to simulate a coin flip. The
number �rand()/(double)RAND_MAX� is a random number
between zero and one. In the �if� statement, I check to see if
this number is less than or greater than 0.5, essentially
assigning �heads� to one case and �tails� to the other. Can you
see how we could generalize this for an unfair coin? Or for a 6-
sided die?

Note that, since we don't know in advance whether the user will
get an addition or a subtraction problem, we now have to store
the problem's correct answer in a variable (�answer�) so we can
compare it with what the user enters, rather than just calculating
it on the fly.

Practice Problem: Zombie Plague!
Zombies are taking over the world! Quick, let's write
a program to simulate the spread of the Zombie
Plague!

Here are the rules:

� Zombism is infectious! When a zombie encounters
a non-zombie, there's a good chance that the non-
zombie will become a new zombie.

� Zombies travel slowly, so they don't encounter too
many people each day, and the people they do
encounter can run much faster than a zombie.
Given these limitations, a zombie can only zombify
three or fewer people per day.

� It all starts with one zombie....

Given these rules, can we write a program that will predict how many
zombies there will be thirty days after the first zombie appears?

Let's work through this problem together.

As you read along, try to figure it out yourself before
going on to the next page.

Taking a First Stab at it:
Here's some advice for getting started:

� Naturally, you're going to need some variables. I recommend these:
int zombies = 1; // Total number of zombies. Start with 1.
int newzombies; // Total number of new zombies zombified today.
int ndays = 30; // Number of days.
int i,z; //Some counters. Use as needed.
double maxencounter = 3; // Max. # of people encountered by zombie per day.
double encounters; // Actual number of people encountered by a zombie today.
double infected; // Number of people infected by a zombie today.

� Let's start out by assuming everyone the zombie encounters gets
zombified. So, �infected� will always equal �encounters�.

� I recommend you print out the total number of zombies each day, from
day zero to the end.

How would you go about writing the program? Give it a try before you
look at the following pages.

The program's strategy should be something like
this:

�Each day, for each zombie, find a random number of
encounters (less than maxencounters). At the
beginning of the day, set newzombies = 0. As you
look at each zombie, add the number of people it
zombifies to newzombies, until at the end of the day
newzombies contains the total number of new
zombies for that day. Add that to the total number of
zombies, and print it out.�

srand(time(NULL));
printf ("Starting with %d zombie(s)\n",zombies);
for (i=0; i<ndays; i++) {
 newzombies = 0; // Reset number of new zombies for today.
 for (z=0; z<zombies; z++) {
 // Number of people this zombie encounters today:
 encounters = maxencounter * (rand()/(double)RAND_MAX);
 // Assume everyone encountered gets zombified:
 infected = encounters;
 // Add infected to number of zombies today:
 newzombies += infected + 0.5;
 }
 zombies += newzombies;

 printf ("Day %d: %d zombies\n", i,zombies);
}

One Possible Way to Do It:
Here's one way to write the program:

This, combined with the fact that
newzombies is an �int�, rounds the
number to the nearest integer.
Can you understand why?

This, combined with the fact that
newzombies is an �int�, rounds the
number to the nearest integer.
Can you understand why?

This uses the strategy described on the preceding page.

Note that I've left out the �#include� lines, the �int main () {�, and
the variable definitions (see preceding slide). You'll need to add
these back in to have a working program.

What happens when you compile and run this program? You
may be surprised by a couple of things:

- �Wow! The number of zombies goes up really fast!�

- �Waitaminnit! Why does it suddenly turn into a negative
number?!!�

You'll also notice that the program goes slower and slower as
you accumulate zombies.

Maybe our zombie simulation is unrealistic.
For example, once most people have been
zombified, most zombies would be unable to
find anyone to make into a new zombie.

Maybe we need to take this into account in
our program. How could we do that? Think
about it before looking at the next page.

Probability a Person is a Non-Zombie

Number of Zombies

Note: �1e+06� is a way of writing
1.0 x 106 (or 1,000,000).

Note: �1e+06� is a way of writing
1.0 x 106 (or 1,000,000).

Zombie Probability:

Pr
ob

ab
ili

ty
As the number of zombies
grows, it becomes less and
less probable that someone
you meet on the street isn't a
zombie.

Note: This graph assumes a
population of 8,000,000.

Note: This graph assumes a
population of 8,000,000.

As more and more people are zombified, the probability
that an encountered �person� isn't already a zombie falls
lower and lower. We can estimate the probability as

(population � zombies)/(population)

This is equal to 1 when there are zero (or very few)
zombies, and equal to 0 when all of the population has
been zombified.

We can use this to simulate any kind of random
event for which we know the probability.

In our zombie example, we're going to assume that
the probability of meeting a non-zombie has a value
given by:

(population � zombies)/population

which decreases as the number of zombies grows.
On any given day of our simulation, we'll know how
many zombies there are, and can calculate the
probability. We can then �flip a coin� to decide
whether a person is a zombie or not.

for (i=0; i<ndays; i++) {
 newzombies = 0; // Reset number of new zombies for today.
 for (z=0; z<zombies; z++) {
 // Number of people this zombie encounters today:
 encounters = maxencounter * (rand()/(double)RAND_MAX);
 nonzombies = 0;
 for (j=0; j<encounters; j++) {
 flip = rand()/(double)RAND_MAX;
 if (flip < (population - zombies)/population) {
 nonzombies++;
 }
 }
 infected = nonzombies; // Assume every non-zombie encountered gets zombified:
 newzombies += infected + 0.5;
 }
 zombies += newzombies;
 if (zombies > population) { // Can't exceed total population!
 zombies = population;
 }
 printf ("Day %d: %d zombies\n", i,zombies);
}

int j;
double nonzombies; // Number encountered who are non-zombies.
double population = 8000000; // Population (VA = 8,000,000).
double flip;

Putting on the Brakes: Two new things:
� Don't exceed the total

population
� Gets harder to find

somebody to zombify

Two new things:
� Don't exceed the total

population
� Gets harder to find

somebody to zombify

Some new variables:

Change the mid-section:

Flip a �coin� to see it this
person is a non-zombie

Flip a �coin� to see it this
person is a non-zombie

Let's assume that Virginia closes its borders shortly after the zombie
outbreak is discovered, so the maximum number of zombies is the
total population of Virginia.

In the program above, every time a zombie encounters somebody
we flip a virtual �coin� to decide whether the person has already been
infected with zombism. This isn't a 50/50 coin though. Instead of
comparing �flip� to 0.5, as we did in the solution to one of last week's
practice problems, we compare it to the ever-decreasing probability
that this person is a non-zombie.

We also put an explicit test into our program to make sure the
number of zombies can never exceed the total population. We need
this in case our program happens to generate a big batch of zombies
just before we reach the population limit.

Try running the program. Do you see how it behaves differently?

That's still a lot of zombies, isn't it?!

We could either look at this as the probability that an
encountered person is 100% immune to zombism
(with some people being unvaccinated), or the
probability that some partially-effective vaccine will
protect a vaccinated individual. (Or some
combination of the two scenarios.) We're not
worrying about the details, we'd just like to see what
happens if, somehow, some people are immune.

nonzombies = 0;
for (j=0; j<encounters; j++) {
 flip = rand()/(double)RAND_MAX;
 if (flip < (population - zombies)/population) {
 // Is this person susceptible to zombism?
 flip = rand()/(double)RAND_MAX;
 if (flip < susceptibility) {
 nonzombies++;
 }
 }
}

nonzombies = 0;
for (j=0; j<encounters; j++) {
 flip = rand()/(double)RAND_MAX;
 if (flip < (population - zombies)/population) {
 nonzombies++;
 }
}

double susceptibility = 0.1;

Previous Program

New Program

Accounting for Immunity:
To add the immunity effect to our program, we need to flip a �coin�
again. This time, we check to see if each non-zombie we encounter is
immune to zombism:

Here's the
previous
program:

Here's the
previous
program:

To add
immunity,
we add
another
coin flip
before
counting
our
�converts�:

To add
immunity,
we add
another
coin flip
before
counting
our
�converts�:

The bottom example shows a new variable
�susceptibility�, which we've set to 0.1 (10%),
meaning that only 10% of the population is
susceptible to being zombified.

Try out this modification to the program, and try
different values for susceptibility. Does it behave the
way you expect? For example, this program should
produce results similar to the preceding program if
you set the susceptibility very high, but you should
see almost no zombies if susceptibility is very low.

As I'm sure you've noticed, nothing we've done here
is specific to zombism. The same general ideas are
relevant to any contagious disease, or indeed to
anything that's transmitted from one individual to
another. (It could be applied to memes on the
internet, for example.)

The End

Thanks!

