

Introduction to
Computational

Physics
Meeting 1: Zero to Loops

Today:
� Simple C Programs
� Variables
� Loops
� Putting it all together....

Welcome!

In this short-course we'll try to get you up and programming!
I hope you'll learn at least four important skills:

* How to connect to a remote computer,
* create programs there,
* run them,
* and view the results.

We'll be using the C programming language under the Linux
operating system. The goal is for you to understand the
mechanics and concepts of scientific programming.

Bits and Bytes:

0

1
The data in your computer is all stored in bunches of
microscopic switches. Each switch can only have two
values, �1� or �0� (�on� or �off�). The amount of
information stored by one switch is called a �bit�, and
we often talk about flipping bits on or off.

These bits are usually grouped together in sets of
eight. A group of eight bits is called a �byte�.

1 0 1 1 0 1 1 0
Why eight bits? First, because eight is a power of two (23), making it
convenient for binary (base-2) arithmetic. (Just as 10, 100 or 1000
are convenient in base-10.) Second, because the very popular early
Intel CPUs used data in 8-bit chunks.

Some people claim that �bit� is a shortened form of
�binary digit�, but I'm skeptical.

How a Program Runs:

Memory

When running a program, a computer's CPU fetches
instructions from the computer's memory.

01101010
00111001
00100100
10111111
00101101
11010010
10010110

CPU

The memory also contains data. The instructions tell
the CPU to add, compare or do other simple
operations on the data.

Of course, different CPUs use different
instruction sets.

We usually write programs in human-readable languages like C,
but CPUs don't understand C. The programs we write must be
translated into a series of binary low-level instructions that the
CPU can understand. This translation is done by a program called
a compiler.

Programming Languages:

01101010
00111001
00100100
10111111
00101101
11010010
10010110

�Hello Computer!
Please add 2.5 to
3.6 and tell me the
answer.
kthxbye.�

Compiler

There are hundreds of different computer languages.
 Each has its own strengths and weaknesses, and
no language is best for all tasks. When choosing a
language for a particular project, programmers think
about whether the language's strengths are a good
match for that project.

C has been around for 40 years or so. It achieved its popularity
for many reasons:

C is simple in that there aren't many words in the C language.
The core functionality of C can be extended by writing
�functions� (written in C) that can be stored in libraries and
re-used. For example, the C language doesn't have a
square-root command, but there's a library of math functions
that contains a square-root function.

To implement a C compiler on a new kind of computer, a
programmer just needs to write a compiler that can understand
the small, core part of C. Then he or she can use this to
compile all of the libraries containing math functions and other
things.

This was very important back in the days when almost every
computer manufacturer used a different CPU with a different set
of instructions.

Don't be Afraid of the Computer!

On/off

USB

Image Credit: Finian Wright.

This is important advice! Don't be daunted just
because something doesn't make sense at first. Ask
questions. Try things out. And remember that other
people are probably confused, too. This
short-course is intended to help you learn stuff!

#include <stdio.h>
int main() {
printf(“Hello World!\n”);

}

A Simple C Program:

Here's a C program that prints �Hello World!�

The main part
of a C program
is enclosed in
a framework
like this.

Here's where the
work gets done!

printf(“Hello World!\n”);

Function Character String
End of statement

Special Character (newline)

This is about the simplest C program you can write.
If you search on Wikipedia, you'll find a long list of
�Hello World� programs written in many different
languages. Some of them are truly bizarre.

Using Variables:

#include <stdio.h>
int main() {

double x;
double y;
double slope = 2.0;
double y0 = 1.5;

x = 5.2;
 // Calculate the y value:

y = slope * x + y0;

 printf(“at %lf y is %lf\n”, x, y);
}

Here's a more complicated program:

Definitions of variables.
Pick good variable names! Unlike
algebra, in programming long names
can be better!

Definitions of variables.
Pick good variable names! Unlike
algebra, in programming long names
can be better!

This is a comment. It will be ignoredThis is a comment. It will be ignored

Arithmetic operators.Arithmetic operators.

These are both placeholders and
format specifiers.

These are both placeholders and
format specifiers.

Values.Values.

The �double� just means that these variables are
�double-precision floating-point numbers�. This tells
C how much space in memory it needs to reserve for
storing them. As we'll see, most of the time your
variables should be either �double� or �int�. Use
�double� for anything that might have a decimal
point, and �int� for integers.

In the �printf� statement above, �%lf� means �save a
space for a 'double' value here�. The letters �lf�
stand for �long float�, which is another way of
referring to �double� variables. Did I mention that C
has a 40-year history?

Notice that �printf� is a function, just like functions in
algebra. Within the parentheses following it you find
a list of arguments. In this case, a format string and
two numbers.

cdouble float int float

Storing Variables:

...

When your program runs, it sets up an area in the computer's
memory for storing the value of each of your variables:

8 bytes 4 bytes8 bytes

4 bytes

1 byte

4 bytes

Different types of variables are given different amounts of space.
Bad things can happen if you try to stick the wrong type of data into
a variable.

velocity x number a y

What would happen if you tried to stick a �double� value the variable
named �x�, above?

For storing numbers, reach for �int� or �double� first, but there are
lots of other types.

Answer: If you succeeded, the data would spill over
into the adjoining variable (�number�) and corrupt it.

The C compiler tries to prevent this sort of thing two
ways:

� It warns you when try to stick the wrong type of
data into a variable, and
� It tries, when reasonable, to re-cast your data into a
format that's appropriate for the variable into which
you're putting it.

The most powerful computers in the world aren't laptop or desktop computers. They're huge
computing clusters that occupy whole rooms. Usually these clusters are located far away
from the researchers who use them.

Researchers use local computers (perhaps a
laptop) to communicate with the remote computing
cluster. They connect to it through the Internet.

Once connected, the researcher can
create and run programs on the
cluster. Complicated programs might
run for hours or days. After
researchers have started a program
running, they can disconnect from
the cluster and come back again later
to check on the progress of their
program.

What's �Scientific Computing�?

Scientific researchers push the limits of computing.
The world's most powerful computers are used for
Physics, Astronomy, Environmental Science and
many other areas of scientific research.

If you pursue a career in computationally-intensive
research, you'll need to learn how to use these
remote computers.

Why Linux?:

Linux

Linux-based computer systems are a mainstay in the world of
scientific computing. In any laboratory setting where the research
requires large amounts of data processing or computationally
intensive calculations, you will routinely find a Linux/Unix cluster of
computers handling the workload.

As of Nov 2010 92%
(96%, counting Unix) of
the world�s top
performing computer
systems operate on
Linux. Linux is the
overwhelming choice for
building world-wide high
performance computing
Grids.

Source: top500.org

(Twice a year top500.org posts benchmark
measurements for the top 500 fastest computers on
earth.)

The chart above is out of date. As of September
2014, 97% of the top 500 computers are now
running Linux.

Desktop View of a Lab ComputerDesktop View of a Lab Computer
Click here to open a terminal window.Click here to open a terminal window.

The desktop environment on our lab computers will
probably look similar to the desktop of other
computers you've used. At the bottom left, there's a
button that will pop up a menu of programs, and
along the bottom of the screen there are a few icons
for commonly-used programs, like the terminal
emulator we'll be using.

Try clicking it to open a terminal window.

The Command Line:

Why do we do things from the command line?:

* Text commands are easily reproduced. It's easy to document what you've
done, or to tell someone else exactly how to do it, or to automate what
you've done. Being able to exactly replicate your procedures is especially
important when analyzing scientific data.

* Text commands don't require much bandwidth. They can be used even
over slow network connections.

* In Linux, graphical tools might provide a front-end to help you do tasks, but
you can do more from the command line.

[~/demo]$ ls
clus.pdf data-for-everybody.1.dat phase2
cluster.pdf ForYourEyesOnly.dat readme.txt
cpuinfo.dat phase1 ReadMe.txt

Prompt Command Results

Output of the �ls� command, which lists the files in the current directory.

The answer is that the command line has its own
advantage. Here are some of the things that might
make someone choose to use the command line
under Linux.

The first item is the most important, I think. This is true
for all operating systems, not just Linux, and it's why
all major operating systems still have a
command-line interface and continue to improve it.

Case Sensitivity:

Important Note: when typing commands, file names,
etc...

Linux and C/C++ are

CaSe SeNsItIvE
So, for example:

This is not the same as this,
VELOCITY is not the same as Velocity or velocity,

MyFile.dat is not the same as MyFile.DAT

For best results, stick to all lower-case unless there's a
good reason to do otherwise.

Using the �nano� Text Editor:

[~/demo]$ nano hello.cpp

Press Ctrl-X to
exit, and optionally
save your file.

Your file.

There are many text editors, but I recommend you
start out with a simple editor called �nano�. To use
nano to edit a file, just type �nano� followed by the
file name. Once in nano, you can type normally, or
you can use special control keystrokes to do things
like saving your file or searching. These are listed at
the bottom of the window.

The list at the bottom uses �^� to mean �hold down
the Ctrl key�, so �^X� means �press Ctrl-X�.

Compiling and Running Your Program:

[~/demo]$ g++ -Wall -o hello hello.cpp

Let's say you've saved the C code for our �Hello World� program in a
file called �hello.cpp�. To compile this into an executable binary file that
you can run, you could type:

The qualifier �-o hello� tells the compiler that we want the output
executable file to be named �hello�. The �-Wall� tells the compiler to
warn you about any possible problems it notices. We can run this
executable file by just typing �./� followed by its name. Here's what will
happen:

[~/demo]$./hello
Hello World!

#include <stdio.h>
int main() {
 printf(“Hello World\n”);
}

Success!

Congratulations! You're a programmer.

Writing a Second Program:

#include <stdio.h>
int main() {

double x;
double y;
double slope = 2.0;
double y0 = 1.5;

x = 5.2;
 // Calculate the y value:

y = slope * x + y0;

 printf(“at %lf y is %lf\n”, x, y);
}

Now let's try our slope/y-intercept program. Call it �line.cpp�:

[~/demo]$ g++ -Wall -o line line.cpp
[~/demo]$./line
at 5.200000 y is 11.900000

Success!

line.cppline.cpp

As with the �hello.cpp� program, you can start up the
editor by typing �nano line.cpp�. When you're done
typing your program, press Ctrl-X to save it and exit
from nano.

Later on, we'll learn how to ask the user for numbers,
so we'll be able to ask the user to enter a value for x,
instead of having the value written explicitly into the
program.

The for Loop:

Loops are the reason computers were invented. It's easy to do
something once, but computers excel at repetitive tasks. C offers
several ways of doing loops. One of them is the �for� loop:

int i;
for (i = 0 ; i < 10 ; i++) {
 printf(“loop number %d\n”, i);
}

Loop number 0
Loop number 1
Loop number 2
Loop number 3
Loop number 4
Loop number 5
Loop number 6
Loop number 7
Loop number 8
Loop number 9

Output:

Initialize Are we done? Increment

The statement �i++� means �set i to i + 1�. In C,
�++� is the increment operator. There's also a
decrement operator that decreases a variable's
value.

Try It!

%d is the print format for int
variables. %lf is for double variables.

The loop continues until the test condition is no
longer true. See the following graphical
representation.

In the example above, I've left out the �framework�
that we used in our other examples, but you'll need
to put it in to make a complete program. Take a look
at the �include� and �main� lines of the earlier
examples, and remember to add a closing �}� at the
bottom of your program.

i = 0;

i++;

i < 10 ?

printf(“loop number %d\n”,i);

YES

NO

Continue...

How a for Loop Works:

If never true, no loops

Initialize:

Test:

Increment:

for (i = 0 ; i < 10 ; i++)
The for statement:

This diagram may help you understand what's going
on in a �for� loop.

Notice that if we gave i a value like 100 in the
beginning, the program would never do the printf.
Instead, it would just skip the loop entirely.

This is important, because later on we'll encounter
another kind of loops that will always be acted on at
least once.

Practice Problem #1:

What if we wanted our program to count to 1000 by hundreds
(100,200,300,... up to 1000)? How could we do that without changing
the �for� line in the preceding example?

Practice Problem #2:
As you do more programming, you'll find that randomly-chosen
numbers can be amazingly useful. Try doing this to one of your �for�
loop examples:

* At the top of the program, add:
#include <stdlib.h>
#include <time.h>

* Then, just above the �for� statement, add:

srand(time(NULL));

* Finally, inside the �for� loop put a statement like this:

printf(“%lf\n”, rand()/(double)RAND_MAX);

Here are some problems to challenge you! We'll
look at solutions for them next time.

The End

Thanks!

