

Introduction to
Computational

Physics
Meeting 2: �rand� to Math

Today:
� The code development dance
� More command-line tools
� More operators and math functions
� Nested loops

Welcome back!

From now on, remember that you can try out these programs
using your account on Galileo. For instructions on how to use
Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll be following up on the random-number practice
problem from last week. We'll use random numbers to write a
program that simulates a physics problem.

Let's get started!

Congratulations!
You're a

programmer!

First of all....

You've written, compiled and run several programs.
Everything else is just details.

OK, so you're a novice programmer. There are still
lots of things to learn. But no matter what field you
go into, that will always be true.

You've already shown that you have the skills to
write programs. All you need is practice.

The Code-Development Dance:

1. nano hello.cpp

2. g++ -Wall -o hello hello.cpp

3. ./hello

Here are the steps you used to write your programs.
Programmers typically go through these same steps over and
over again as they improve their programs:

Edit the program.Edit the program.

Compile the program.Compile the program.

Run the program.Run the program.

Repeat!Repeat!

We did all of this by typing commands on a local or remote Linux
computer.

No matter how far you go in programming, you'll still
follow this same process while developing programs.

Don't worry if your program doesn't work the first
time. (Mine seldom do!) You just work on it, try it
again, and keep repeating until it does what you
want.

From C to bits:

#include <stdio.h>
int main () {
 printf(�Hello World!\n�);
}

g++ -Wall -o hello hello.cpp

hello.cpp

01101010

00111001

00100100

10111111

hello

A compiler is a thing that translates
our human-readable program
(hello.cpp), written in the C language,
into instructions that the computer
can understand. The compiler writes
these instructions into a new file,
called �hello� in this example.

We can tell the computer to run the
program by typing something like
�./hello�.

The compiler itself is just another
program, written by somebody else
for our benefit. It's a program that
reads the file �hello.cpp�, translates it,
and writes the file �hello�. When we
type �g++� we're telling the computer
to run the compiler program.

The compiler itself is just another
program, written by somebody else
for our benefit. It's a program that
reads the file �hello.cpp�, translates it,
and writes the file �hello�. When we
type �g++� we're telling the computer
to run the compiler program.

Remember that �compiling� just means �translating
our human-readable C program into a binary format
that the computer can understand�.

More Command-line Commands:

[~/demo]$ ls
clus.pdf data-for-everybody.1.dat phase2
cluster.pdf ForYourEyesOnly.dat readme.txt
cpuinfo.dat phase1 ReadMe.txt
[~/demo]$ nano hello.cpp
[~/demo]$ cp hello.cpp new.cpp
[~/demo]$ mv new.cpp hello_new.cpp

Prompt Command Results

ls List the contents of a directory.

nano Edit a file.

cp Copy a file.

mv Move (rename, relocate or both) a file.

rm Delete (remove) a file.

g++ Compile a C (or C++) program.

Some useful commands:

The prompt means �Hello human! I'm
ready to receive another command�.

Poof!

The �cp� command is particularly useful. Instead of
typing a whole new program, you can copy an old
program that's similar, and then edit the copy.

These commands may seem odd, but think of them
like magic spells. You type the magic words, and the
computer does something for you.

Also remember that you can re-use commands you've
typed before, by using the up and down arrow keys
on your keyboard. Press up repeatedly to recall
commands you've typed before.

Last Week's Practice Problem #1:

#include <stdio.h>
int main() {

int i;
for (i = 0 ; i < 10 ; i++) {

 printf(“loop number %d\n”, 100*i);
}

}

We had a �for� loop that counted from 0 to 9. How can we change the program so
that it counts from 0 to 900 without changing the �for� line? Here's one way:

#include <stdio.h>
int main() {

int i;
int value;
for (i = 0 ; i < 10 ; i++) {

 value = i*100;
 printf(“loop number %d\n”, value);

}
}

and here's another:

In the first case, we just print out 100*i instead of i by
itself.

In the second case, we create a new variable called
�value�, and set it to 100*i.

Either way is fine.

Tips for Using Loops:

� Use your counter variable (like �i�) only for counting how many
times you've gone around the loop.

� Count starting with zero, not 1. This will make things much easier
in the future.

� Don't change the value of your counter variable inside the loop.
For example, what would this do?:

#include <stdio.h>
int main() {

int i;
for (i = 0 ; i < 10 ; i++) {

i = 100*i;
 printf(“loop number %d\n”, i);

}
}

Try it!

If you tried the example program above, you'd see
that it only prints out two numbers, instead of the ten
numbers you might have expected. Why is this? It's
because you've changed the value of i inside the
loop.

The first time around the loop, the program prints �0�,
and the second time around the loop it prints �100�.
So far, so good. But then the program stops.

This happens because the second time around the
loop we set i to a value of 100. When we get back to
the top of the loop, the �for� statement sees that
�i<10� is no longer true, and the loop stops.

Last Week's Practice Problem #2:

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main() {

int i;
srand(time(NULL));
for (i = 0 ; i < 10 ; i++) {

 printf(“%lf\n”, rand()/(double)RAND_MAX);
}

}

Here's a program that generates a list of ten �random� numbers:

Defines things needed for
�time�, �rand� and �srand�.

Defines things needed for
�time�, �rand� and �srand�.

Initialize random number
generator.

Initialize random number
generator.

The �rand� function generates a random integer between zero and
RAND_MAX (which is defined in �stdlib.h�). Notice that �rand� is a
function that takes no arguments.

What would happen if we left out the
line with �srand�?

What would happen if we left out the
�(double)� in front of RAND_MAX?

Try these!

An easy way to temporarily remove a line from your program is to convert it into
a comment. Just put �//� in front of the �srand� line above, and g++ will ignore it
just like any other comments. Then, when you want to put the line back,
remove the �//�. Programmers often �comment out� lines while they're
experimenting with a program.

Without �srand� you'll find that the program always generates the same set of
numbers. This is because computers can usually only generate
�pseudo-random� numbers. Computers use math, and math is deterministic.
The numbers �rand� generates look random to us, but they're really determined
by a starting value that rand uses to begin generating values. If we don't tell
the program otherwise, this starting number (called a �seed�) is always set to 1,
so we always get the same set of numbers.

�srand� can be used to choose a different seed. In this case, we're telling rand
to use the current time (in seconds since Jan 1, 1970) as the seed. Thus,
every time we run the program we'll get a different set of numbers (as long as
we wait at least 1 second between tries).

Finally, if you temporarily take the �(double)� out, you'll find that the program
just generates a bunch of zeros. This is because the value returned by rand()
is an integer, and RAND_MAX is an integer, so the compiler assumes that we
want an integer answer if one by the other. The result gets truncated to zero.

Computers are very important for simulating complex
physical systems that can't be understood analytically.

Think about how NOAA predicts the weather. It would be
impossible to �calculate� tomorrow's weather, because of all
of the complex interactions between air, water, sunlight and
a million other things. Instead, NOAA can write programs to
simulate the behavior of small volumes of air, and simulate
the relatively simple interactions between these small
volumes.

Let's try to simulate the very simple physical process
described in the slide above.

(For more on stones in gutters, see the excellent short story
�Fall of Pebble-Stones� by R.A. Lafferty.)

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 double d = 0; // Total distance, in cm.
 int i;
 srand(time(NULL));
 for (i=0; i<10; i++) {
 // Add a random distance between 0 and 100 cm.
 d = d + 100.0 * rand()/(double)RAND_MAX;
 printf("%lf\n", d);
 }
}

gutter1.cpp

Simulating the Stone:
Here's a first try at simulating the stone's behavior. We start with a
program like our earlier random-number generating program, but now
add the random numbers, to get our total distance after each
repetition:

Try it!

This is very similar to the second Practice Problem from last
week. I've highlighted the differences in red. You might think
about copying your earlier program, and using that as a starting
point for writing this new program.

The program defines a variable, d, to hold the total distance the
stone has travelled so far. Then the program loops through ten
days, moving the stone by a random distance between 0 and
100 cm each day. Each time the stone moves, the program
prints out its new position. When you run the program, you
should see a list of increasing numbers as the stone moves
along the gutter.

For now, treat this long expression:

rand()/(double)RAND_MAX

as magic, and don't worry too much about how it works. Just
remember that it generates a number between zero and one.

+ a+b Addition

- a-b Subtraction

* a*b Multiplication

/ a/b Division

Arithmetic Operators:

C has many arithmetic operators. Here are some of them:

Operator Usage Equivalent to

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

decrement a++ � a = a+1
decrement a-- � a = a-1

Some operators let you do
arithmetic while assigning
a value to a variable.

Some operators let you do
arithmetic while assigning
a value to a variable.

++ and -- do this too:++ and -- do this too:

If we say:

d += 100;

we mean �increment the value of d by 100�. This is
similar to the �++� operator we've used before, in
�for� loops. The difference is that �++� increments
the value by 1.

We can use �+=� to make our previous program a
little nicer.

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 double d = 0; // Total distance, in cm.
 int i;
 srand(time(NULL));
 for (i=0; i<10; i++) {
 // Add a random distance between 0 and 100 cm.
 d += 100.0 * rand()/(double)RAND_MAX;
 }
 printf("Total distance is %lf cm.\n", d);
}

gutter2.cpp

A Slight Improvement:
Here's a second version of our gutter problem. This time, we use the
+= operator to increment our distance. We also now only print out the
final distance, and we make the format of our output a little more
friendly.

Let's Race!

Notice that I've moved the printf statement outside
the �for� loop. The new program only prints out the
final value of �d�.

The printf statement also give the user a little more
information, by telling him/her what this number
means.

Finally, notice that I've used the �+=� operator here to
increment the value of d. This can help catch typos
in a large program, since we're only typing the name
of the variable once. In a large program, where we
might have a variable named �d� and another
variable named (say) �e�, we could run into trouble if
we accidentally typed �d = e+1� instead of �d=d+1�.

Lots of Rocks:

If we ran our previous program lots of times, we'd see that the
results were spread out in a distribution like this:

Total distance after 10 days, in cm

This might represent the way 1,000 rocks would be distributed if we let them
wash down our gutter. We could run our program 1,000 of times to simulate
this.

You can imagine that it might actually be useful to
know how these rocks would be distributed. Can
you see that we're starting to get some rather
complicated, useful information out of our simple
simulation?

Nested Loops:
...or, we could just add another loop to our program, to run the
simulation thousands of times for us!

Instead of printing out the result of each trial, let's just print out the
average distance a stone travels in 10 days:

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 double d;
 double dsum = 0; // Sum of distance values.
 int i, j;
 srand(time(NULL));
 for (j=0; j<1000; j++) { // Do 1000 trials.
 d = 0; // Reset d back to the starting line.
 for (i=0; i<10; i++) {
 // Add a random distance between 0 and 100 cm.
 d += 100.0 * rand()/(double)RAND_MAX;
 }
 dsum += d;
 }
 printf("Average distance is %lf cm.\n", dsum/1000);
}

gutter3.cpp

Now we have a loop inside another loop. The inner
loop is the same one we had in the previous
program. The outer loop is new.

The outer loop runs our rock simulation 1000 times,
and sums up the final distances for each of the trials.
Once all of the trials are done, the program prints out
the average final distance (by just dividing the total
by 1000).

If you run the program several times, you'll see that
you get slightly different values for the average,
varying by maybe +/- 10. If you increase the number
of trials to 1,000,000 (remembering to also divide by
1,000,000 in the printf statement), you'll find that the
average is much more stable.

Stopping Runaway Loops:

Press
Ctrl-C !

When you have loops inside loops, it's very easy to
make a mistake that can cause your program to run
away, printing out lots of stuff. If you don't want to
wait for it to stop (and maybe it never will!), you can
tell the program to stop running by pressing Ctrl-C.

sqrt Square Root

cos, sin, tan, etc. Trig Functions

exp ex

log Natural Logarithm

Math Functions:
Lots of math functions are available for use in your programs. Here are
a few of them:

For example:

value = sqrt(x);

x = radius*cos(theta);
y = radius*sin(theta);

a = exp(1/x);

We can make use of some of these math functions in
our simuation program.

Arguments of Math Functions:

Note that C's math functions take and return parameters that are of
type double:

double y, x;
y = sqrt(x);

The compiler reads information from <math.h> that tells it how sqrt
should work. When it encounters a call to sqrt() in your code, it can
check that you are calling it correctly:

� giving the right number of parameters,
� using the output value properly
� etc...

For example:

double q;
int i;
i = sqrt(10.);
q = sqrt(10.,2.);

This will generate a warning.

This will generate an error.

This is one reason we usually use �double� for
floating-point numbers in this class.

Our previous program already keeps track of the sum of the
�d� values (since we use it to calculate the average). If we
start summing up the squares of the �d� values too, we can
combine these two sums as shown above to tell us
something about the width of our distribution of values.

This technique is very useful, and it's something you'll use
over and over again if you go on to write more complicated
programs.

#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 double d;
 double dsum = 0; // Sum of distance values.

 double d2sum = 0; // Sum of squares.

 double dsigma; // Std. deviation.
 int i, j;
 srand(time(NULL));
 for (j=0; j<1000; j++) { // Do 1000 trials.

 d = 0; // Reset d back to the starting line.
 for (i=0; i<10; i++) {
 // Add a random distance between 0 and 100 cm.
 d += 100.0 * rand()/(double)RAND_MAX;
 }
 dsum += d;
 d2sum += d*d;
 }
 dsigma = sqrt((d2sum - dsum*dsum/1000)/(1000-1));
 printf("Average distance is %lf, sigma =%lf cm.\n", dsum/1000, dsigma);
}

gutter4.cpp
The Whole Enchilada:

M
e
a

n

+/- 2s

So here's the final version of our simulation program.
 It calculates the average distance travelled in 10
days by 1000 stones, and tells us about how far
they'd spread out.

If the numbers were distributed in a �bell curve� (aka
a �Gaussian distribution�), statistics tells us that we
should expect 95% of the stones to lie within 2*s
centimeters of the average. If you run the program
above, you'll find that s is about 90 cm.

Practice Problem:

Our gutter programs have a lot of numbers written into them: 10
days, 100 cm, 1000 trials. If we want to change to, say, 10,000 trials,
we need to find all of the places in the program where we currently
assume a value of 1000, and change them.

It would be better if these numbers were more easily changed. Can
you rewrite the program so that the number of days, the maximum
�slide� in cm, and the number of trials are given by variables defined
near the top of the program?

For example:

int ndays = 10;
double maxslide = 100.0; // in cm.
int ntrials = 1000;

Here's something else to work on. We'll look at a
solution next time.

The End

Thanks!

