

Introduction to
Computational

Physics
Meeting 3: Readin' and Iffin'

Today:
� Getting input from the user
� Using �if� statements

Welcome back!

From now on, remember that you can try out these programs
using your account on Galileo. For instructions on how to use
Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll be adding a couple of new C statements: �scanf�,
which lets you read input from the user, and �if� which lets you
control what the program does, based on given criteria.

Let's get started!

Last Week's Practice Problem:

 double d;
 double dsum = 0; // Sum of distance values.
 double d2sum = 0; // Sum of squares.
 double dsigma; // Std. deviation.

 double maxjump = 100.0; // Size of max. jump, in cm.
 int ndays = 10; // Number of days per trial.
 int ntrials = 1000; // Number of trials.

 int i, j;
 srand(time(NULL));
 for (j=0; j<ntrials; j++) { // Do ntrials trials.
 d = 0; // Reset d back to the starting line.
 for (i=0; i<ndays; i++) {
 // Add a random distance between 0 and maxjump cm.
 d += maxjump * rand()/(double)RAND_MAX;
 }
 dsum += d;
 d2sum += d*d;
 }

 dsigma = sqrt((d2sum - dsum*dsum/ntrials)/(ntrials-1));
 printf("Average distance is %lf cm, sigma is %lf cm.\n", dsum/ntrials, dsigma);

Set the program's parameters up
here. We can easily change them
later by just changing these
easy-to-find numbers.

Set the program's parameters up
here. We can easily change them
later by just changing these
easy-to-find numbers.

Use variables later in
the program, rather
than explicit values.

Use variables later in
the program, rather
than explicit values.

Last week, I asked you to try to make it easier to change the numbers in our �gutter�
problem. Here's one way you might do that:

Note that I've omitted the
#include statments and the �int
main () {...}� to save space.

Note that I've omitted the
#include statments and the �int
main () {...}� to save space.

Note that I've marked the two nested loops in red.

It's generally good practice to set the values of any
parameters near the top of the program, and to add
comments to make it clear what they're used for.

Then, in the body of the program, we can use the
names of these variables in place of any previously
�hard-coded� numbers. Then, whenever we need to
change one of the parameters, we can just edit one
line of our program and re-compile it.

Taking Orders from the User:

We'd like to ask the user what
parameters to use when he/she
runs the program, please!

Coming right up!

...but still, it's a lot of trouble to edit your progam and
recompile it every time you want to change a
number, especially if you want to change the
numbers often.

Wouldn't it be nicer to just ask the user what
numbers to use when he/she runs the program?

Using the �scanf� Function:

#include <stdio.h>
int main () {
 int i;

 printf("Enter an integer: ");

 scanf("%d",&i);

 printf("The number you entered was %d\n", i);
}

This �&� is very
important!

This �&� is very
important!

Try It!

C provides a function called �scanf� that can read input typed by the
person running the program. Here's an example:

Remember the steps in the coding dance!:

� nano reader.cpp
� g++ -Wall -o reader reader.cpp
� ./reader

reader.cpp

What happens if you enter �1.5�?What happens if you enter �1.5�?

Scanf is sort of the opposite of printf. The printf function
writes things, and the scanf function reads things. The �f� in
both cases stands for �formatted�, and both functions take a
�format string� as their first argument.

Why does scanf need to have an �&� in front of the
variable names? We'll get to that soon.

If you try giving this program a number like �1.5� you'll see that
it gets truncated to �1�. This is because scanf is looking for
something like an integer, and it stops looking as soon as it
encounters something that isn't part of an integer.

Try entering �5, but other things too�. You'll see that the
program tells you you typed �5�. What if you type a letter as
the first character? We'll explain what happens when we talk
about reading text, in a later meeting.

An Example with Floating-Point Numbers:

#include <stdio.h>
int main () {
 double a;

 printf("Enter floating-point number: ");

 scanf("%lf",&a);

 printf("The number you entered was %lf\n", a);
}

This �&� is very
important!

This �&� is very
important!

Try It!

Here's the same thing, but with floating-point numbers:

Remember the steps in the coding dance!:

� nano reader2.cpp
� g++ -Wall -o reader2 reader2.cpp
� ./reader2

reader2.cpp

What happens if you enter �1�
instead of �1.0�?

What happens if you enter �1�
instead of �1.0�?

Now we're telling scanf to expect a floating-point
number. As in the previous example, if we type other
stuff after the number, it will just get ignored.

(A �1� is a perfectly good floating-point number, so
scanf just tells us that the value we entered is
�1.000000�.)

The format strings we give scanf tell the program
how to parse the things we enter. If our scanf
statement said �scanf("my age is %d",&i);� then
we'd need to type something like �my age is 53�.

With printf, the format string says how the output
should be formatted. With scanf, it says how the
input should be formatted.

One more example:

#include <stdio.h>
int main () {
 int i;
 int j;

 printf("Enter an integer number: ");
 scanf("%d",&i);
 printf("Enter another integer number: ");
 scanf("%d",&j);

 printf("The %d + %d = %d\n", i, j, i+j);
 printf("The %d - %d = %d\n", i, j, i-j);
 printf("The %d * %d = %d\n", i, j, i*j);
 printf("The %d / %d = %d\n", i, j, i/j);

}

Here's an example with two scanf statements:
askme.cpp

Why do we need the �&�? Because the scanf function modifies the
values of its arguments. You need this when using scanf to read
numbers. (Text is different, but we'll talk about this later.)

You mustn't forget the �&�,
Best Beloved.

You mustn't forget the �&�,
Best Beloved.

When you give a value to a C function as one of its
arguments, that value is immediately copied into a
temporary internal variable inside the function. This
is fine for many things, but it won't work if we need to
actually modify the value of the original variable.

To do that, we have to tell the function the memory
address at which the variable lives. The & in front of
a variable name just means �the memory address of
this variable�.

We give scanf the memory address of a variable,
then scanf gets some input from the user, processes
it into the appropriate format, and sticks it into
memory at that address

Making Decisions:

YES

No

Computers are good at loops,
but they're also good at making
comparisons and decisions, and
doing those things very rapidly.

Computers are good at loops,
but they're also good at making
comparisons and decisions, and
doing those things very rapidly.

Up until now, we've mostly dealt with programs that
follow a single path from start to finish. Now we'll
look at ways to control the execution of our
programs.

#include <stdio.h>
int main () {
 int i;
 int j;

 printf("Enter an integer number: ");
 scanf("%d",&i);
 printf("Enter another integer number: ");
 scanf("%d",&j);

 if (i+j > 10) {
 printf("The sum of these numbers (%d) is greater than 10\n",
 i+j);
 }

}

A Simple �if� Statement:

Try It!
Remember the steps in the coding dance!:

� nano checksum.cpp
� g++ -Wall -o checksum checksum.cpp
� ./checksum

Remember the steps in the coding dance!:

� nano checksum.cpp
� g++ -Wall -o checksum checksum.cpp
� ./checksum

checksum.cpp

This is pretty straightforward: The �printf� statement
inside the curly brackets is only acted upon when the
condition in the �if�'s parentheses is true. It's easy to
read this as a sentence: �If i+j is greater than 10,
print some stuff.�

�if� statements check to see if some condition is true,
then decide whether to take some action.

�if� Statement Syntax:
A simple �if� statement can be written in two different ways. Here's the
more general way to write one:

if (CONDITION) {
BLOCK of statements

}

Syntax:

if (a > 1) {
printf(“Hello There!\n”);
b = a * 2;
printf(“b is: %d\n”,b);

}

Alternatively, if you only have one line in your block of statements,
you can omit the curly brackets and write it like this:

if (CONDITION)
statement;

Syntax:

if (a > 1)
printf(“Hello There!\n”);

Example:

Must be true (not zero) or
false (zero).

Example:

Don't Do This:

With �if� statements, we can make the computer execute
different parts of our code, depending on the result of a test.

I really recommend that you don't use the form of the �if�
statement without curly brackets. It can lead to confusion later.
Syntax like this led to a scary security bug on Apple computers
recently:

http://stackoverflow.com/questions/21999473/apples-goto-fail-se
curity-bug

#include <stdio.h>
int main () {
 int i;
 int j;

 printf("Enter an integer number: ");
 scanf("%d",&i);
 printf("Enter another integer number: ");
 scanf("%d",&j);

 if (i+j > 10) {
 printf("The sum of these numbers (%d) is greater than 10\n", i+j);
 } else {
 printf("The sum of these numbers (%d) is NOT greater than 10\n", i+j);
 }

}

Using �else� to Handle Two Alternatives:

Try It!

Remember the steps in the coding dance!:

� nano checksum2.cpp
� g++ -Wall -o checksum2 checksum2.cpp
� ./checksum2

Remember the steps in the coding dance!:

� nano checksum2.cpp
� g++ -Wall -o checksum2 checksum2.cpp
� ./checksum2

checksum2.cpp

You can optionally add an �else� statement to an �if�
statement. If the condition in parentheses is false,
the actions in the �else� clause will be done.

if (i+j > 100) {
 printf("The sum of these numbers (%d) is greater than 100\n", i+j);
} else if (i+j > 50) {
 printf("The sum of these numbers (%d) is greater than 50\n", i+j);
} else if (i+j > 25) {
 printf("The sum of these numbers (%d) is greater than 25\n", i+j);
} else {
 printf("The sum of these numbers (%d) is less than 25\n", i+j);
}

Using �else if� for Many Alternatives:

Try It!

Remember the steps in the coding dance!:

� nano checksum3.cpp
� g++ -Wall -o checksum3 checksum3.cpp
� ./checksum3

Remember the steps in the coding dance!:

� nano checksum3.cpp
� g++ -Wall -o checksum3 checksum3.cpp
� ./checksum3

checksum3.cpp

(Note that I've omitted the other
parts of the program to save space.
 You'll need to add those in to make
a usable program. Copy your
previous program to get started.)

You can deal with as many alternatives as
needed by adding �else if� statements to
your program:

You can add as many conditions as you like, by
sticking on �else if� statements. Each �else if� has
some alternative condition that may be satisfied.

Even these complicated �if� statements can still be
read as sentences: �If this is true, do something,
otherwise if that is true do a different thing, ...�.

if (i+j > 100) {
 printf("The sum of these numbers (%d) is greater than 100\n", i+j);
} else if (i+j > 50) {
 printf("The sum of these numbers (%d) is greater than 50\n", i+j);
} else if (i+j > 25) {
 printf("The sum of these numbers (%d) is greater than 25\n", i+j);
} else {
 printf("The sum of these numbers (%d) is less than 25\n", i+j);
}

More on �else if�:

This happens if nothing else
matches.

Note: You don't need to have
an �else� section. Without it,
the �if� statement will just do
nothing if there are no
matches.

This happens if nothing else
matches.

Note: You don't need to have
an �else� section. Without it,
the �if� statement will just do
nothing if there are no
matches.

Only the first match will be
acted upon.

Only the first match will be
acted upon.

Note that only the first matching condition will be
acted upon. Even if other later conditions match too,
they'll be ignored.

If you have a final �else� statement in the list, that will
only be acted upon if none of the �if� or �else if�
conditions are met.

Note the �==� operator. This compares two values to
see if they're equal. This is often confused with �=�,
which assigns a value to a variable.

In C, if I say �a=2� I'm telling the program to stick the
value �2� into the variable �a�. If, on the other hand, I
say �a==2� I'm saying �compare the value in 'a' with
the value '2' and tell me if they're the same.�

The most important thing is that the �==� operator
doesn't change the values of the variables, but the
�=� operator does.

This confusion is the source of many bugs in many
programs.

Try It!
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 int i;
 int j;
 int sum;

 srand(time(NULL));

 i = 100.0 * rand()/(double)RAND_MAX;
 j = 100.0 * rand()/(double)RAND_MAX;

 printf("What is %d + %d ?: ", i, j);
 scanf("%d",&sum);

 if (i+j == sum) {
 printf("Right!\n");
 } else {
 printf("Nope. The sum of these numbers is %d. Go back to school.\n",
 i+j);
 }
}

checkme.cpp

Remember the steps in the coding dance!:

� nano checkme.cpp
� g++ -Wall -o checkme checkme.cpp
� ./checkme

Remember the steps in the coding dance!:

� nano checkme.cpp
� g++ -Wall -o checkme checkme.cpp
� ./checkme

Here's a little program that
checks your addition skills!

Here's a little program that
checks your addition skills!

Note �==�, not �=�!Note �==�, not �=�!

Checking Equality:

Here's a simple math quiz program. It generates two random
integers, and asks the user to add them and enter the sum. The
program then checks to see if the user got it right.

Note that some C compilers might give you a warning like this
when you compile this program:

warning: converting to �int� from �double�

This is OK for now. We'll talk about why that happens later. You
can get rid of those warnings by rewriting the �rand� statements
like this:

 i = (int)(100.0 * rand()/RAND_MAX);

(Be careful to keep track of all of the parentheses!) In general,
you should try to write programs that don't cause any warning
messages when you compile them.

As you'll see if you try it, this program doesn't do
what we wanted it to do. The reason has to do with
the difference between floating-point numbers (which
can have decimal places going on forever � think of
Pi, for example) and integers, which always have a
finite number of digits.

./checkme2
What is 69.159857 + 42.844554 ?: 112.004411
Nope. The sum of these numbers is 112.004411. Go back to school.

What Went Wrong?
You probably saw something like this:

To find out why it didn't work, we'll need to look more closely at the
numbers.

A computer is a physical device with limitations. Whenever it deals
with a number, there's some limit to the number of decimal places the
computer can store. We call this limit the �precision� of our numbers.

When you use the �%lf� format to print out a number, your program
shows the first six decimal places, but inside the program the number
is actually much more precise.

If we tell printf to show us more decimal places, we'll see what went
wrong above. Here's how:

Wha?

%20.10lf

�Show 20 characters, with 10 digits to the right of the decimal point.�

We can change %lf to %x.ylf , where x tells the
program how many characters to print out, and y
tells it how many of those characters should be to
the right of the decimal point.

Comparing Floating-Point Numbers with �==�:

The == operator compares two numbers and returns �true� if they are
the same. This works fine for integers, but you shouldn't use it for
floating-point numbers. This example shows why:

int main(){
 double a=12345678.;
 double loga2 = log(a*a);
 double b=sqrt(exp(loga2));
 printf("b=%20.10lf a=%20.10lf\n",b,a);
 return(0);
}

b=�e
ln �a2�

=�a2
=a

b=12345678.0000000224 a=12345678.0000000000

Output:

Clearly, �b� is not equal to �a� due to the limited precision of the
calculations.

In the purple box, you see that �b� should be equal to
�a�. Each of the long series of mathematical
operations on �a� (square root, log, square) results in
some roundoff error, since we can't keep infinitely
many decimal places. By the time we've done them
all, the result is slightly different from the original
value. This means that it's difficult to compare
floating point numbers. We can't just use the
comparison operator �==�, since the two numbers
aren't, strictly speaking, equal.

Try It!
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 double i;
 double j;
 double sum;
 double epsilon = .000001;

 srand(time(NULL));

 i = 100.0 * rand()/(double)RAND_MAX;
 j = 100.0 * rand()/(double)RAND_MAX;

 printf("What is %lf + %lf ?: ", i, j);
 scanf("%lf",&sum);

 if (fabs(i+j – sum) < epsilon) {
 printf("Right!\n");
 } else {
 printf("Nope. The sum of these numbers is %lf. Go back to school.\n",
 i+j);
 }
}

checkme3.cpp

Remember the steps in the coding dance!:

� nano checkme3.cpp
� g++ -Wall -o checkme3 checkme3.cpp
� ./checkme3

Remember the steps in the coding dance!:

� nano checkme3.cpp
� g++ -Wall -o checkme3 checkme3.cpp
� ./checkme3

How To Do It Right:

The right way to compare floating-point numbers is
to ask whether they differ by more than some small
amount, epsilon.

In the program above, we define epsilon to be
something acceptably small for our purposes, and
then we use the �fabs� function to get the absolute
value of the difference between the actual sum and
our guess. If this difference is less than epsilon, we
say we're close enough.

To use the �fabs� function, you'll need to add
�math.h� at the top of your program.

Note that we could have done the same thing without
�fabs� by checking to see if the difference was
somewhere between -epsilon and epsilon.

Try It!#include <time.h>
#include <stdlib.h>
#include <stdio.h>
int main () {
 int i;
 int j;
 int sum;
 int nproblems;
 srand(time(NULL));
 for (nproblems = 0; nproblems < 10; nproblems++) {
 i = 100.0 * rand()/(double)RAND_MAX;
 j = 100.0 * rand()/(double)RAND_MAX;
 printf("What is %d + %d ?: ",i,j);
 scanf("%d",&sum);
 if (i+j == sum) {
 printf("Right!\n");
 } else {
 printf("Nope. The sum is %d. Go back to school.\n", i+j);
 }
 }
}

mathdrill.cpp

Remember the steps in the coding dance!:

� nano mathdrill.cpp
� g++ -Wall -o mathdrill mathdrill.cpp
� ./mathdrill

Remember the steps in the coding dance!:

� nano mathdrill.cpp
� g++ -Wall -o mathdrill mathdrill.cpp
� ./mathdrill

A Math Practice Program:
Here's a math drill program that just keeps asking
questions:

Tip: Use Ctrl-C to quit!Tip: Use Ctrl-C to quit!

Here we just take the integer addition program we
made before, and wrap it with a loop. The loop
keeps the program asking questions until we've
answered 10 of them. If you get tired before then,
use Ctrl-C to stop the program.

Practice Problem #1:

Could you make the math practice program keep score, and tell the
user how well he/she did at the end?

Practice Problem #2:

Could you use an �if� statement and random numbers to make the
program choose addition or subtraction at random?

Here are some other things to work on. We'll look at
solutions next time.

The End

Thanks!

