

Introduction to
Computational

Physics
Meeting 4: Files and Whiles

Today:
� Reading and writing files
� Using �while� loops

Welcome back!

From now on, remember that you can try out these programs
using your account on Galileo. For instructions on how to use
Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll be adding a couple of new C functions: �fprintf�,
which is like �printf�, but writes its output into a file, and �fscanf�,
which is like �scanf�, but reads its input from a file. We'll also
look at a new kind of loop, the �while� loop.

Let's get started!

Last week's zombie-simulation exercise used features of the C
language that you'd seen before, but it introduced some new
ways to use them.

In particular, most of these examples made use of the fact that
we can simulate the progression of a system if we know the
probabilities that the system's components will behave in
certain ways. (For example, the probability that a
non-zombified person will contract zombism when he/she
encounters a zombie.)

It's often difficult or impossible to write down equations that
describe the time-evolution of a complex system (the weather,
for example). But, if we know a few simple rules about how
the system's components behave and interact with each other
locally, we can often write a program that approximates the
system's future behavior.

Files and Directories:

�Document� or �File�:

�Folder� or �Directory�:

We'll spend a while today talking about files and
directories, and then go on to talk about how to use
those in C programs.

First of all, a word on nomenclature: In the Linux
world, we usually talk about �files� and �directories�.
If you're coming from the Windows or Mac world, you
may be more familiar with the terms �documents�
and �folders�. Don't let the terms confuse you. A
�file� is just a �document� by another name, and a
�directory� is just a �folder�.

/

bin/

home/

bkw1a/

elvis/

work/

play/

myprog.cpp

myprog2.cpp

notes.txt

My home directoryMy home directory

Elvis's home directoryElvis's home directory

The top of the filesystem The top of the filesystem

I made this to hold
my work-related files

I made this to hold
my work-related files

The �filesystem� tree:

Here's a highly simplified
diagram showing how
files and directories are
arranged on a Linux
computer. In this
diagram, each user has a
�home directory� that's
located inside a parent
directory called �/home/�.

Here's a highly simplified
diagram showing how
files and directories are
arranged on a Linux
computer. In this
diagram, each user has a
�home directory� that's
located inside a parent
directory called �/home/�.

(We sometimes omit the trailing
�/� when we write directory
names.)

Each file has an address called a
�path�. The address of the file
�myprog.cpp� is:
/home/bkw1a/work/myprog.cpp

Although in most situations you can omit the trailing
�/� in directory names, it's always good to put it in
since that can help avoid some common errors.

Listing Files in a Directory:

[~/demo]$ ls -lp
total 72
lrwxrwxrwx 1 bkw1a bkw1a 11 Mar 26 2010 clus.pdf -> cluster.pdf
-rw-r----- 1 bkw1a bkw1a 20601 Jan 18 2009 cluster.pdf
-rw-r----- 1 bkw1a bkw1a 983 Jan 18 2009 cpuinfo.dat
-rw-r--r-- 1 bkw1a bkw1a 29 Jan 18 2009 data-for-everybody.1.dat
-rw------- 1 bkw1a bkw1a 41 Jan 18 2009 ForYourEyesOnly.dat
drwxr-x--- 3 bkw1a bkw1a 4096 Jan 18 2009 phase1/
drwxr-x--- 2 bkw1a bkw1a 4096 Jul 16 2009 phase2/
drwxrwxr-x 2 bkw1a bkw1a 4096 Jan 26 2012 phase3/
-rw-r----- 1 bkw1a bkw1a 72 Jan 18 2009 readme.txt
-rw-r----- 1 bkw1a bkw1a 9552 Jan 18 2009 ReadMe.txt
drwxrwsr-x 2 bkw1a bkw1a 4096 Jul 16 2009 shared/
drwxr-xr-x 2 bkw1a bkw1a 4096 Apr 14 2009 tmp/

As we've seen before, you can use the �ls� command to list the files in
a directory. If you want even more information about the files, you can
type �ls -lp�:

This tells you who owns the file, how big it is and who's allowed to read
or write the file, among other things. Notice that this directory contains
several sub-directories. When you type �ls -lp� these will show up with
a �/� at the end of their names, although �ls� by itself will omit this.

Try it!

The output of �ls -lp� also shows you the time and
date at which the file was last modified.

The first letter of the first column tells you what kind
of thing this is: �d� for directory, �-� for file, and some
other letters for more esoteric things.

You can use this to create sub-directories
underneath your home directory, into which you can
sort your files.

The �Working Directory�:

/

bin/

home/

bkw1a/

elvis/

work/

play/

Working DirectoryWorking Directory

My home directoryMy home directory

[~/demo]$ cd work/

The �working directory� is where
the computer will look for files
by default.

You can change the working
directory with the �cd� (for
�change directory�) command.

When you first log in, your home
directory is the working
directory.

Try typing
�cd practice�

Type �cd� to
go back home!

When you type a command like �nano hello.cpp�
the computer looks for (or creates) the file
�hello.cpp� in the current working directory.

The command �pwd� will show you what the current
working directory is.

Typing �cd� by itself will just take you back to your
home directory.

More on the �Working Directory�:

[~/demo]$ pwd
/home/bryan/work

You can see what directory you're currently working in by using the
�pwd� command:

[~/demo]$ cd work/

You can change your current directory by using the �cd�
command, like:

[~/demo]$ cd /home/bryan/work/

Or, equivalently:

In the first case, we specify the name of a directory relative to the
current directory, and in the second case we explicitly give the full
path name (the complete name of the directory we're interested in.)

Note that the path to a file or directory is given as a list of parent
directories, separated by slashes, starting with the root directory
(�/�). In this case, the current working directory is
�/home/bryan/demo�.

The �Home Directory�:

[~/demo]$ echo $HOME
/home/bryan

Each user has a �home directory�. This directory will be
your current directory right after you log in.

You can use the $HOME environment variable in
commands, to refer to your home directory.

[~/demo]$ ls $HOME/demo

You can also refer to your home directory as �~�, in most shells.

[~/demo]$ ls ~/demo

$HOME is a shell variable, or �environment variable�.
These are similar to the variables we'll use in C
programs. In fact, you can write programs in the
shell language, too. These are usually called
�scripts� or �shell scripts�. They can be used to
automate shell tasks you do often.

Sending a Progam's Output to a File:

[~/demo]$./hello
Hello World!

[~/demo]$./hello > hello.txt

Let's look back at yoiur �Hello World� program. When you ran it, it
wrote some output on your screen:

When you run your program, you can tell the computer to send the
output into a file instead of to the screen. To do so, use the �>� symbol
like this:

In the example above, if hello.txt already existed it would be
overwritten, so be careful!

You can also ask to append things onto the end of an existing file, like
this:

[~/demo]$./hello >> hello.txt

Try this with one of
your programs.

Use �nano� to look at
the file you create!

Yay! We can write things to a file.

So, we're all done with that, right?.......

Writing Files from a C Program:

fprintf(out, �%d�, i);

If we can use �>� to redirect a program's output into a
file, why would we want to make our C programs
write files in any other way? There are at least a
couple of reasons:

* Sometimes we want to send some output to the
screen and some to a file. Think about a program
that asks the user for some input, and then writes out
some data. Text that says �Please enter your age�
should go to the screen, but we might want the rest
of what the program writes to go into a file.

* Sometimes a program needs to write more than
one file. Think about a program that sorts data into
several categories, and writes each category to a
different file.

Writing Files Directly from Your Program:

#include <stdio.h>
int main () {

 FILE *output = fopen("hello.txt","w");

 fprintf(output, "Hello File!\n");

 fclose(output);

}

C gives us the functions �fopen� and �fclose� for opening and closing
files, and the function �fprintf� (like �printf�) for writing into files.

File Name

Files can be opened for reading, writing, appending, or some
combination of these.

Open for
Writing

Here �output� is a �file
pointer�. It's used to refer to
the file later in the program.

Here �output� is a �file
pointer�. It's used to refer to
the file later in the program.

Try it!

hellofile.cpp

Notice the asterisk.Notice the asterisk.

The variable �output� can be called a �file pointer�, a
�file descriptor� or a �file handle�. You may see it
referred to by any of these terms.

Notice the �*� in front of �output� in the fopen
statement. We'll talk about what this means when
we look at pointers.

You don't have to use �output� as the file pointer
variable. You can call it anything you want to.

In the fopen statement, we can say that we want to
read (�r�), write (�w�) or append (�a�) to the file. There
are other options, too.

Another Writing Example:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main () {
 int i;

 FILE *output = fopen("writerdata.txt","w");

 for (i=0; i<1000; i++) {
 fprintf (output, "%d ", i);
 fprintf (output, "%d ", i*i);
 fprintf (output, "%lf ", sin(2.0 * M_PI * i/1000.0));
 fprintf (output, "%lf ", cos(2.0 * M_PI * i/1000.0));
 fprintf (output, "%lf ", 250000.0 - (i-500)*(i-500));
 fprintf (output, "\n");
 }

 fclose(output);

}

writer.cpp

Try it!

Here's a slightly less trivial example:

This program writes 1,000 lines of the form:

x, y1, y2, y3, y4

where the �y� values are various functions of x.

This program writes 1,000 lines of the form:

x, y1, y2, y3, y4

where the �y� values are various functions of x.

End the line here.End the line here.

What happens when you run this program? You
won't see anything if the program is working
correctly! That's because everything the program
writes is going into the file �writerdata.txt�.

You can type �nano writerdata.txt� to look at the
output file.

0 0 0.000000 1.000000 0.000000
1 1 0.006283 0.999980 999.000000
2 4 0.012566 0.999921 1996.000000
3 9 0.018848 0.999822 2991.000000
4 16 0.025130 0.999684 3984.000000
5 25 0.031411 0.999507 4975.000000
6 36 0.037690 0.999289 5964.000000
7 49 0.043968 0.999033 6951.000000
8 64 0.050244 0.998737 7936.000000
9 81 0.056519 0.998402 8919.000000
10 100 0.062791 0.998027 9900.000000
.
.
.

x y1 y2 y3 y4
writerdata.txt

The Output File:

Here's what the output
would look like if we
graphed it:

y1 vs x y2 vs x

y3 vs x

y4 vs x

On the left is what you should see if you type �nano
writerdata.txt�.

As you can see, we've written a file with five columns
of numbers.

Another Kind of Loop:

How many
more loops?!!

I dunno!

To write a �for� loop, we need to know how many
times we're going to go around. We can say �do ten
loops� or �do 100 loops�.

But sometimes we'd like to say �loop until you're
done�, because we don't know how many times we'll
need to do something.

Think about a program that reads a file line by line,
for example. We generally won't know how many
lines are in the file. We just want to keep reading
until we get to the end.

Fortunately, C provides an easy way to do this kind
of thing.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main () {
 int sum = 0;

 srand(time(NULL));

 while (sum < 21) {
 sum += 13.0*rand()/(double)RAND_MAX;
 printf ("Sum is now %d\n", sum);
 }

}

Another Kind of Loop:
With a �for� loop, you need to know the number of loops in advance.
C also gives us a �while� loop, which just keeps going until some
condition is met. Here's an example:

Loop until sum is no
longer less than 21.

Loop until sum is no
longer less than 21.

addem.cpp

Why do we bother?Why do we bother?

Try it!

This program does something like the game
�blackjack�, which deals out cards to players who try
to get a sum as near to 21 as possible without
exceeding it.

A �while� loop is what's called a �conditional loop�. It
keeps going until some condition is met. In contrast,
a �for� loop is called a �counted loop�, since we tell it
in advance how many times it should go around.

Remember: If you find that your program just isn't
stopping because there's a mistake somewhere, you
can kill it by typing CTRL-C.

The condition in the parentheses after �while� is just
a logical expression that evaluates to either zero
(false) or some non-zero value (true), just like a
condition associated with an �if� statement.

We can use any of the conditions we used with �if�
statements with �while� statements too.

 while (1) {
 sum += 13.0*rand()/(double)RAND_MAX;
 printf ("Sum is now %d\n", sum);

 if (sum == 21) {
 printf ("You WIN!\n");
 break;

 } else if (sum > 21) {
 printf ("You lose!\n");
 break;

 } else {
 printf ("Enter 1 to continue or 0 to quit while you're ahead: ");
 scanf("%d", &ans);
 if (ans != 1) {
 printf("Your final score was %d\n",sum);
 break;
 }

 }
}

Letting the User Make a Choice:
One more version of this. Here' we let the user decide whether to keep
the current score, or try for a better one (possibly overshooting and
losing):

Ask the user if he/she
wants to go on.

Ask the user if he/she
wants to go on.

This is more like the card
game �blackjack�, where
players try to get as close to 21
as possible without going over.

This is more like the card
game �blackjack�, where
players try to get as close to 21
as possible without going over.

addem3.cpp

This is just an improved versionof the previous
program. The only addition is the �else� clause.

Reading Files:

fscanf(in, �%d�, &i);

Hmm...
I wonder what's

for lunch?

OK, so we know how to write files now. How about
reading them?

Just as C has an �fprintf� that's analogous to �printf�,
there's also an �fscanf� that's like �scanf�, but for
files.

Like �fprintf�, �fscanf� takes a file pointer as its first
argument.

Reading a File:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main () {
 int status;
 double x, y1, y2, y3, y4;

 FILE *input = fopen("writerdata.txt","r");
 while (1) {
 status = fscanf(input,
 "%lf %lf %lf %lf %lf",
 &x,&y1,&y2,&y3,&y4);
 if (status == EOF) {
 break;
 }
 printf ("%lf\n",y4);
 }
 fclose(input);
}

This program reads the data
file we wrote earlier, in the
format:

x, y1, y2, y3, y4

This program reads the data
file we wrote earlier, in the
format:

x, y1, y2, y3, y4

Open for reading.Open for reading.

fscanf returns a value that can be
used to see if we've reached the
end of the file.

fscanf returns a value that can be
used to see if we've reached the
end of the file.

fscanf is like scanf, but from a file. fscanf is like scanf, but from a file.

readfile.cpp

Here's a simple program that reads the data file we
wrote with one of the previous programs and prints
out one of the columns.

Notice that fscanf tells us about its status by
returning a value that we can capture in a variable
(�status�, in this example). One of the things fscanf
might tell is is �Hey! I've reached the end of the file!�.
It does this by returning the value �EOF� (for �End Of
File�). This is really just a number, but the symbol
EOF is defined in the file �stdio.h�, and it's easier to
remember than a number. Also, there's no
guarantee that different C compilers will return the
same number, but they'll all have a stdio.h that
defines EOF appropriately for that particular
compiler.

Finding the Maximum:

double max = 0;

FILE *input = fopen("writerdata.txt","r");

while (1) {
 status = fscanf(input,
 "%lf %lf %lf %lf %lf",
 &x,&y1,&y2,&y3,&y4);
 if (status == EOF) {
 break;
 }

 if (y4 > max) {
 max = y4;
 }
}

printf ("Maximum value of y4 is %lf\n", max);
fclose(input);

Now let's do something with the data we read. This program finds the
maximum value of y4:

Is y4 greater than the previous
largest value? If so, set max to y4.

Is y4 greater than the previous
largest value? If so, set max to y4.

readfile2.cpp

Here's a program that does something more useful.
It scans through a file, and prints out the maximum
value from one of the columns.

Can you see how it finds the maximum? Each time
around the loop, the program compares the current
value of y4 with the biggest value it's seen before
(�max�). If y4 is bigger than max, it sets max to the
new value of y4.

Practice Problem:

How would you modify the �readfile.cpp� program so that it reads data
from �writerdata.txt� and then writes two columns of data into a new
file? Let's say the two columns are x and (y22 + y32).

Here's something else to work on. The previous
examples either wrote a file or read a file. Now we're
thinking about doing both reading and writing in the
same program. We'll look at solutions next time.

The End

Thanks!

