

Introduction to
Computational

Physics
Meeting 5: Arrays

Today:
� Vectors and Histograms.

Welcome back!

From now on, remember that you can try out these programs
using your account on Galileo. For instructions on how to use
Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll be looking at arrays, which are lists of related
variables. We'll be using them to make vectors and histograms.

Let's get started!

Last Week's Practice Problem:
How would you modify the �readfile.cpp� program so that it reads data
from �writerdata.txt� and then writes two columns of data into a new
file? Let's say the two columns are x and (y22 + y32).

int status;
double x, y1, y2, y3, y4;

FILE *input = fopen("writerdata.txt","r");
FILE *output = fopen("newdata.txt","w");

while (1) {
 status = fscanf(input,
 "%lf %lf %lf %lf %lf",
 &x,&y1,&y2,&y3,&y4);
 if (status == EOF) {
 break;
 }
 fprintf (output, "%lf %lf\n",

 x, y2*y2 + y3*y3);
}

fclose(input);
fclose(output);

readwrite.cpp

Open a second file,
for wrtiting into.

Open a second file,
for wrtiting into.

Write things into the
file.

Write things into the
file.

Close the file.Close the file.

Sometimes programs need to have lots of files open
at the same time. Remember: you don't need to use
�input� and �output� as the names of your files
handles. You can call them anything you like. If you
need to have write to two files, you might refer to
them as �out1� and �out2�. Or, even better, you
might use a name that tells you something about
what's in the file, like �baddatapoints� and
�gooddatapoints�.

We often need to carry around sets of related data:
the coordinates of a vector, for example. Until now,
we've had no way to tell the computer that a group of
variables was related.

Arrays let us do that.

Let's start out by looking at a program that doesn't
use arrays, and then compare it to another program
that does the same thing using arrays.

The following is the BAD example.....

Doing it this way will work, but it's fraught with peril.
You have to keep track of the subscripts yourself,
and it's really easy for typos to creep in.

Defining Vectors as Arrays:

#include <stdio.h>
int main () {
 double v1[3] = {1.0,2.0,3.0};
 double v2[3] = {4.0,5.0,6.0};
 double sum[3], dot=0;
 int i;

 for (i=0;i<3;i++) {
 dot += v1[i] * v2[i];
 }
 printf ("Dot-product: %lf\n",dot);

 for (i=0;i<3;i++) {
 sum[i] = v1[i] + v2[i];
 }
 printf ("Sum: %lf %lf %lf\n",
 sum[0],sum[1],sum[2]);

 return(0);
}

Define each vector as an
array of three doubles.

Loop through all of the
elements of the array.

Note that array
indices go from zero
to N-1, where N is the
size of the array.

Here's a better way:

Note how arrays can be
initialized.

With vectors, we can tie the components of the
vector together, and carry the whole vector around in
the program. The computer keeps track of the
components, and makes sure they're in the right
places.

Instead of manually typing x, y and z, we can
just loop through the vector's three components with
a �for� loop.

Defining Arrays:

int population[50];
double x1[3] = {1.0,2.0,3.0};

� The elements of an array can be of any type (but all elements of a
given array must be of the same type).

� When defining an array, the number in square brackets says how
many elements are in the array.

� Arrays can optionally be initialized when they're defined.

Arrays take up memory. It's easy to write �double a[1000]�,
but remember that this takes as much memory as a
thousand single variables. Keep this in mind when defining
large arrays.

Think of indices as the subscripts we use in
mathematics when we write expressions like X

i
.

Arrays let us bundle together related data, like the
elements of a vector or (as we'll see) the characters
in a text string.

It's important to remember that each element of an
array takes up just as much memory as a separate
variable of that type. So, if we define a large array
with thousands of elements, we may run into the
limits of the computer's memory.

value = v1[i] + v2[i];

result[i] = M_PI*area;

� Array elements can be referred to by their indices.

� The index must be an integer.

� The index uniquely identifies a single array element.

Working with Arrays:

It's important to remember that the values of array indices
start with zero, and that they end at N-1.

for (i=0;i<3;i++) {
 dot += x1[i] * x2[i];
}

The examples above show basic array usage.

Try it!
#include <stdio.h>
#include <math.h>
int main () {

 double a[3], b[3], distance;
 int i;

 printf ("Enter the coordinates of point A:\n");
 for (i=0; i<3; i++) {
 printf ("\tCoordinate %d: ", i);
 scanf("%lf", &a[i]);
 }

 printf ("Enter the coordinates of point B:\n");
 for (i=0; i<3; i++) {
 printf ("\tCoordinate %d: ", i);
 scanf("%lf", &b[i]);
 }

 distance = 0;
 for (i=0; i<3; i++) {
 distance += pow (a[i] - b[i], 2);
 }
 distance = sqrt(distance);

 printf("The distance between the points is %lf\n",
 distance);

}

A

B

Here we calculate the
distance between A
and B.

This program finds the distance
between two points in 3-d space.

This program finds the distance
between two points in 3-d space.

�pow� raises numbers to
a given power (2 here).

�pow� raises numbers to
a given power (2 here).

The program above prompts the user for the
coordinates of two points, A and B, and then
computes the distance between those points.

A good way to test the program is to enter -1, 0, 0 for
the first vector and 1,0,0 for the second. The
resulting distance should be 2.

I've used the �pow� function here just to save space.
Usually, when squaring a number, it's faster to use
�x*x� instead of �pow(x,2)�. Pow is useful for raising
numbers to other powers, though. You can use any
exponent, even fractional ones.

Some Things to Look Out For:

Arrays give us a lot of new abilities, but they also
introduce a whole zoo full of potential pitfalls to
beware of.

Bits and Bytes:

0

1
The data in your computer is all stored in bunches of
microscopic switches. Each switch can only have two
values, �1� or �0� (�on� or �off�). The amount of
information stored by one switch is called a �bit�, and
we often talk about flipping bits on or off.

These bits are usually grouped together in sets of
eight. A group of eight bits is called a �byte�.

1 0 1 1 0 1 1 0
Why eight bits? First, because eight is a power of two (23), making it
convenient for binary (base-2) arithmetic. (Just as 10, 100 or 1000
are convenient in base-10.) Second, because the very popular early
Intel CPUs used data in 8-bit chunks.

To explain some of the mistakes you can make with
vectors, let's start by looking again at the way your
programs store numbers.

When you define a variable, the program allocates a
chunk of memory where that variable's value will be
stored as a binary number.

cdouble float int float

Storing Variables:

...

When your program runs, it sets up an area in the computer's
memory for storing the value of each of your variables:

8 bytes 4 bytes8 bytes

4 bytes

1 byte

4 bytes

Different types of variables are given different amounts of space.
Bad things can happen if you try to stick the wrong type of data into
a variable.

velocity x number a y

What would happen if you tried to stick a �double� value the variable
named �x�, above?

Answer: If you succeeded, the data would spill over
into the adjoining variable (�number�) and corrupt it.

Similar, but more subtle things can occur with the
elements of an array.

1 0 1 1 0 1 1 0

0 0 1 1 0 0 1 1

0 1 1 0 0 1 0 0

1 0 0 1 1 1 1 1

Storage Example:

4 bytes
(32 bits)

Here's how we might store an integer value, using 4 bytes of storage
space. We have 32 bits of data, so we can store any number from zero
up to 232-1 (which is 4,294,967,295).

1 byte
(8 bits)

Although I've shown these bits arranged in a
rectangle so you can see that it's four bytes, the
bits are actually just stored one after the other.

x[2]

00110110

00110111

10110100

00110111

in
t

in
t

in
t

in
t

in
t

in
t

x[1]

x[0]

x[4]

x[3]

int x[5];Array Storage:

The elements of an
array are stored in
contiguous memory
locations.

0 0 1 1 0 1 1 0

0 0 1 1 0 0 1 1

0 1 1 0 0 1 0 0

1 0 0 1 1 1 1 1

x[0]= 3056821407;

When we define an array, our program allocates a
contiguous chunk of memory that's big enough to
hold all of the array's elements. (Five of them, in this
example.)

The illustration shows what happens when we stick a
number into element zero of the array �x�.

When you give the program an array index, the
program multipies the index times the size of each
element to find the memory address where a
particular element lives.

Array Boundary Checking:

Unlike some languages, C doesn't check your
array indices to make sure they're within the
bounds of the array.

For example: int x[3];

x[128] = 100;

x[2]

in
t

in
t

in
t

x[1]

x[0]

...

x[128]

in
t

What data is stored in this location?
Whatever it is, it's not part of the
array �x�, and it's probably not even
owned by this program.

This is the most common source of run-time
errors when using arrays.

The compiler will not check for these errors,
and they won't become apparent until your
program generates a �segmentation fault� error.

Remember: C computes the location (memory
address) of an array element by multiplying the index
times the size of each element.

Having your program crash with a �segmentation
fault� is bad, but at least you know something went
wrong, so you can try to fix it.

But what if you got no error message and the
program just kept running with the wrong data in the
wrong place? That can happen too....

Other Array Errors:

int days[7];
int months[12];

days[7] = 400;

What's wrong with the following code?:

...
...

days[5]

days[6]

months[0]

d
a

y
s

m
o

n
th

s

The index of �days� goes from 0 to 6.

If the arrays �days� and �months� are
stored next to each other in memory,
it's possible that the value 400 gets
written to the first element of the
months array!

In this case, the operating system
doesn't care, because the program
has the right to modify that memory.

400

In the situation above, the program doesn't crash! It just keeps
running with the wrong data in the wrong place. This is because
the program is writing data into an array it really owns. As far as
the operating system is concerned, the program is welcome to
change this memory any way it wants to.

Accidentally writing over data in another of your own program's
arrays might allow your program to run without crashing, but your
results could be bizarre.

Alternatively, corrupt data may cause your program to crash in
code that is far removed from where the array boundary error
initially occurred.

(Think about a program w/ millions of lines of code. Ouch!)

Some tools are available to help debug these specific issues, but
that's beyond our scope. Always try to write code carefully up
front!

Here a couple of other things you can do with arrays.
 We'll come back and look at these in more detail on
another day.

Multidimensional Arrays:

int main(){

 double matrix[20][30];
 int i,j;

 for (i=0; i<20; i++) {
 for (j=0; j<30; j++) {
 matrix[i][j] =
 (double)i * (double)j;
 }
 }

A 2-dimensional array may be defined by specifying two indices:

Defines a 20x30
array.

Higher-dimensional arrays
can be defined by just adding
more indices.

But again, remember that arrays take up just as
much memory as the same number of individual
variables. If you define a 100x100 array, you've
taken up as much memory as 10,000 single
variables. You can quickly run into memory limits
with multi-dimensional arrays.

Character Strings as Arrays:
You may have noticed that all of our variables so far have contained
numbers. We can also use variables to contain text. In programming,
we usually refer to a chunk of text as a �character string�. Character
strings in C are just arrays of characters:

#include <stdio.h>

int main () {
 char string1[20] = "this is a test.";
 char string2[20] = {'t','h','i','s',' ',
 'i','s',' ','a',' ',
 't','e','s','t','.'};

 printf ("%s\n",string1);
 printf ("%s\n",string2);
}

As you can see, strings can either be initialized by giving
individual characters in curly brackets, as you'd initialize any other
type of array, or you can use the more natural way of doing it: Just
write the string and enclose it in quotes.

As you can see above, there's a special format
specifer (%s) for strings. You can use this to write
them out with printf or fprintf.

Don't try to use scanf to read strings, though. We'll
talk about the right way to read strings on another
day.

To Be Continued....

Stay tuned. There's more about matrices and strings
to come in later meetings.

If you stay in Physics, you'll definitely generate a
spectrum like this at least once during your
undergraduate career.

This particular spectrum shows gamma ray energies,
as seen by a Sodium Iodide (NaI) scintillation
detector. The incoming gammas create flashes of
light in the NaI. The amount of light is proportional to
the amount of energy deposited in the crystal. This
light is then detected by a photomultiplier tube (PMT)
and converted into an electrical signal that we can
measure.

x

x

x

x x

x x x

x x x

x x x

x x x x

x x x x x x x

x x x x x x x x x x x x x x x

Constructing the Histogram:

Bin Size
(1 MeV)

Energy, MeV

A 17.3 MeV event
would go here.

A 17.3 MeV event
would go here.

Whenever we see a new gamma ray, we put an �x� in
the appropriate bin, according to its energy. If there
are more �x�es in a bin, that means we saw more
gamma rays in that energy range.

We could use any bin size and any range of
energies. It's up to us to choose something
appropriate.

wget http://tinyurl.com/spectrum-dat
mv spectrum-dat spectrum.dat

curl -L -O http://tinyurl.com/spectrum-dat
mv spectrum-dat spectrum.dat

Getting Some Spectrum Data:

I've made a data file for you that contains the energies of 100,000
different gamma rays. You can get it by typing this:

If your computer doesn't have �wget�, type this instead:

35.130490
36.942571
36.627112
40.780935
34.569799
35.192141
...

spectrum.dat
If you look inside the file (with �nano�, for example),
you'll just see a column of numbers. Each number is
the measured energy, in MeV, of a particular gamma
ray. All of the energies are between 0 and 50 MeV.

Let's make a histogram of these energies.

In a real experiment, you might need to convert the
numbers you measure from, say, voltages to
energies. In this case, let's just assume that all of
those problems have been dealt with, and we're
being presented with a file full of energy values and
being asked to analyze them.

 int i, status, bin, overflow = 0;
 double energy, binsize = 1.0; //MeV.
 int counter[50];

 for (i=0; i<50; i++) {
 counter[i] = 0; // Reset all counters to zero.

 }

 FILE *input = fopen("spectrum.dat", "r");
 while (1) {
 status = fscanf(input, "%lf", &energy);
 if (status == EOF) {
 break;
 }

 bin = energy/binsize;
 if (bin < 0 || bin >= 50) {
 overflow++;
 continue; // Skip this line, and jump to the next.
 }

 counter[bin]++; // Increment the appropriate counter.

 }

 for (i=0; i<50; i++) {
 printf ("%d %d\n", i, counter[i]);
 }
 printf ("Saw %d over/underflows\n", overflow);

�bin� is an integer, so if
�energy/binsize� is, say,
4.3, bin will be equal to 4.

�bin� is an integer, so if
�energy/binsize� is, say,
4.3, bin will be equal to 4.

We've chosen a bin size
of 1.0 MeV.

We've chosen a bin size
of 1.0 MeV.

This is important!
We'll see why later.

This is important!
We'll see why later.

If bin is too big or
small, skip this gamma.

If bin is too big or
small, skip this gamma.

Here I've introduced a new C statement: �continue�.
�continue� is like �break�, but instead of quitting the
loop, it just skips the rest of this iteration and
immediately goes to the top of the loop again.

In this week's practice problem you'll see why it's
important to set all of the array elements to zero
before you start filling them.

Why do we bother to check for overflows and
underflows? In general, there might be oddball
events in our data. (Maybe a high-energy cosmic
ray zips through our detector, or maybe an electronic
problem creates some negative numbers in our data
file.) If we don't deal with these oddballs, we risk
writing past the bounds of our array, and corrupting
memory.

24 1
25 15
26 45
27 181
28 600
29 1474
30 3188
31 6042
32 9623
33 13399
34 15437
35 15366
36 13296
37 9848
38 6047
39 3212
40 1409
41 560
42 192
43 46
44 11
45 6
46 1
47 0
48 0
49 0
Saw 0 over/underflows

Running the Program:

When you run your program,
you should see output like this.

When you run your program,
you should see output like this.

Here's what it would look like if
we graphed it:

Here's what it would look like if
we graphed it:

Yay! We did it.

Practice Problem:

What if we didn't zero out out counters in the histogram program? Try
writing, compiling and running this program to see what happens:

#include <stdio.h>
int main () {
 int data[10];
 int i;

 for (i=0; i<10; i++) {
 printf ("%d %d\n", i, data[i]);
 }

}

Try running the program several times. What
happens? Do you see why it's important to set
counters to zero before using them?

The End

Thanks!

