

Introduction to
Computational

Physics
Meeting 6: Strings & Functions

Today:
� Reading character strings.
� Writing your own functions.

Welcome back!

Remember that you can try out these programs using your
account on Galileo. For instructions on how to use Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll be looking at arrays, which are lists of related
variables. We'll be using them to make vectors and histograms.

Let's get started!

Last Week's Practice Problem:

What if we didn't zero out out counters in the histogram program? Try
writing, compiling and running this program to see what happens:

#include <stdio.h>

int main () {

 int data[10];

 int i;

 for (i=0; i<10; i++) {

 printf ("%d %d\n", i, data[i]);

 }

}

0 -1074441112

1 134513457

2 6643456

3 0

4 -1074441064

5 134513897

6 2759781

7 7304660

8 -1074441080

9 3989492

If we don't set the array elements
to zero, they just contain
whatever random junk was left
over in that memory location from
the last program that was run!

If we don't set the array elements
to zero, they just contain
whatever random junk was left
over in that memory location from
the last program that was run!

Do you see why it's important to set counters to zero
before using them?

Why does this happen? It's because C has reserved
a space in memory to hold the 10 elements of �data�,
but C doesn't automatically clear the contents of that
memory for you.

Never assume that a variable has a value of zero
when you start using it. If it needs to be zero, you
should set it to that explicitly.

Character StringsCharacter Strings

As we've noted before, character strings are just
arrays of characters. Let's look at them a little more
closely.

char name[10] = “NICOLE”;

What are Character Strings?
As we've seen, there are several different types of variables in C.
We've used �int� for integers and �double� for floating-point numbers.
Another type is �char�. A �char� variable can hold one character (letter,
number, punctuation, etc.)

We can use an array of �char�
variables to hold a chunk of
text. We call such an array a
�character string�.

As we'll see, we need to remember that a character
string is an array instead of a single value.
Fortunately C provides some standard functions to
make it easier to deal with character arrays.

In the following we're going to write several tiny
programs that illustrate some problems you might
run into when you use character strings in your
programs. In each case, we'll show you the �right�
way to do it.

Defining Character Strings:

As we saw last time, C variables to contain text. In programming, we
usually refer to a chunk of text as a �character string�. Character
strings in C are just arrays of characters. They can be initialized in
several ways:

#include <stdio.h>

int main () {

 char string0[10];

 char string1[20] = "this is a test.";

 char string2[20] = {'t','h','i','s',' ',

 'i','s',' ','a',' ',

 't','e','s','t','.'};

 char string3[] = “this is a test.”;

 printf ("%s\n",string1);

 printf ("%s\n",string2);

 printf ("%s\n",string3);

}

Works,
but why
do it?

Works,
but why
do it?

We can let the compiler
figure out the length.

We can let the compiler
figure out the length.

The %s format is for strings.The %s format is for strings.

Empty string, for
filling in later.

Empty string, for
filling in later.

As you can see in �string2�, character strings really
are arrays of single characters, and you can look at
(and set) the individual characters if you want to. But
usually there's no reason to do it that way.

As we've seen before, there's a special format
specifer (%s) for strings. You can use this to write
them out with printf or fprintf.

Take care when using scanf with strings, though.
We'll see why soon.

F r e d \0

char name[10] = “Fred”;

0 1 2 3 4 5 6 7 8 9

How Strings are Stored in Memory:

char =
1 byte

10 bytes

name

�\0� is a special non-printable character called NUL. It marks the end
of the string. When you define a character array, you always need to
leave room for the NUL at the end, so the length of the array should
be at least 1 more than the biggest string you want to store.

The NUL tells printf where to stop, for example, when
it's printing out the string. Without this indicator,
printf would just keep printing whatever random
garbage is in the other elements of the character
array.

In fact, since C forgets how long an array is as soon
as you define it, printf would just keep on printing
bytes until it happened to find a NUL somewhere in
memory or caused the program to crash, since it
wouldn't know where the character array ended.

01000001 A 01010101 U

01000010 B 01010110 V

01000011 C 01010111 W

01000100 D 01011000 X

01000101 E 01011001 Y

01000110 F 01011010 Z

01000111 G

01001000 H 00110001 1

01001001 I 00110010 2

01001010 J 00110011 3

01001011 K 00110100 4

01001100 L 00110101 5

01001101 M 00110110 6

01001110 N 00110111 7

01001111 O 00111000 8

01010000 P 00111001 9

01010001 Q

01010010 R ...etc.

01010011 S

01010100 T

American Standard Code for
Information Interchange (ASCII)

1963:1840s:

Character Encoding:

00000000 = “NUL”

Prior to the 1960s, the most widespread way of communicating data
electronically was morse code. When a telegram was sent, its text
was encoded in morse code and transmitted through air or a wire to
its destination, where it was decoded back into text.

Morse code was fine for human telegraphers, but it was clumsy for
computers. In the 1960s the �American Standards Association�
published a new, more computer-friendly way of transmitting text.
This was called the American Standard Code for Information
Interchange (ASCII).

In ASCII, each character is represented by 8 bits of information (1 byte).
 When you store text in a file on disk, the text is stored as ASCII
characters. ASCII characters are also the way communications
between a terminal (or pseudo-terminal) and a computer are
encoded.

(Actually, other encodings like UTF-8 may be used these days, but the
principle is the same. For simplicity, let's just assume everything is
ASCII.)

Characters in Memory:

char day[] = "Tuesday";
01010100

01110101

01100101

01110011

01100100

01100001

01111001

00000000

day
T

u

e

s

d

a

y

\0

Each character takes up one byte (8 bits) in
memory. A character string is just an array of
characters.

Here's what the string above would look like
in the computer's memory:

Each character is represented by an 8-bit (1
byte) ASCII code.

Notice again that the end of the string is
indicated by the special NUL character, which
has the ASCII code �00000000�.

The array named
�day� has eight
elements in this
example. The
eighth one holds
the NUL.

The array named
�day� has eight
elements in this
example. The
eighth one holds
the NUL.

The special character �NUL� is a non-printable
character that's represented by a string of eight
zeros in memory. We sometimes write it as �\0�.

Why doesn't this work? Because �s� and �t� are
arrays. Think about it: if we had two �double�s, x and
y, we could compare their values with �if (x==y)�.
Similarly, if we had two arrays of doubles , a[10] and
b[10], we could compare two of their elements with
�if (a[1] == b[1])�. But what would we mean if we
typed �if(a==b)�?

It turns out that, in C, if you type just the name of an
array, you get the memory address of the beginning
of the array. Since �s� and �t� in the example above
are two different arrays, each of which has its own
allocated section of memory, each of them will have
a different address. So, �if(s==t)� will never be true.

Apparently, that's not the right way to compare two
strings.

The Right Way to Compare Strings:
The strcmp function (defined in string.h) compares two strings:

int strcmp(char* S1, char *S2);

0 if S1 = S2
>0 if S1 > S2
<0 if S1 < S2

Returns:

#include <stdio.h>

#include <string.h>

int main () {

 char s[] = ”junk”;

 char t[] = ”junk”;

 if (!strcmp(s, t)) {

printf (“They match.\n”);

 } else {

printf (“They don't match.\n”);

 }

}

Note the �reversed� logic!Note the �reversed� logic!

Try it!

This is the right way to compare strings.

strcmp compares strings �lexicographically� (i.e., in
dictionary order). One string is �greater than�
another if it would come later in the dictionary. So,
strcmp would say that �aardvark� is less than �zebra�
because �aardvark� comes earlier in the dictionary.

When we say �if (something)�, the �something� is
true if it has a non-zero value, and false otherwise.
Because strcmp returns 0 if the strings are equal,
we need to use a ! (read �not�) to logically invert this
into a true value.

(For now, don't type anything that has spaces in it.)

When you try this you'll find that short strings like
�hello� work fine, but long strings are likely to cause
errors (segmentation faults). This is because scanf
will just keep reading letters as long as we type
them, and stuffing those letters into more and more
locations in memory, even past the end of the �string�
array. Sooner or later, scanf will try to stuff
something into a memory location that doesn't
belong to this program, and the program will crash.

So, how can we keep this from happening?

Reading Strings Safely:

#include <stdio.h>

int main () {

 char string[10];

 printf (“Enter some text:”);

 scanf("%9s",string);

 printf("%s",string);

}

We can fix our program by just adding one letter: change �%s� to
�%9s�. This tells scanf to read no more than 9 characters.

Try it!
Try your program now with
�abcdefghijklmnopqrstuvwxyz�.
What happens?

But what happens if you enter
�the end�?

It turns out that C lets us insert a number in the
middle of �%s� to specify how many characters (at
most) we should read. In the example above, we
say �%9s�, since our array has a length of 10, but we
need to allow one element to hold the final NUL
character at the end of the string.

Now, if we type:
 abcdefghijklmnoprstuvwxyz
the program will print:
 abcdefghi
(just the first 9 characters).

But, if you try entering �the end�, you'll find that the
program thinks you just entered �the�. Why is that?

Reading Strings Containing Spaces:

#include <stdio.h>

int main () {

 char string[10];

 printf (“Enter some text:”);

 fgets(string, 9, stdin);

 printf("%s",string);

}

scanf will stop reading a string when it sees a �white space�
character (a space or a tab). This may not be what you want your
program to do.

If you need to read strings containing spaces, a better choice is
�fgets�. fgets reads a specified number of characters from a file.

C automatically opens a special file called �stdin�. This �file� is
really just our keyboard.

Try it!

So why does �%s� stop at white spaces? It's so we
can do things like this:

char name[10];
int year;
printf (�Enter your last name and birth year:�);
scanf(�%9s %d�, name, &year);

or like this:

char firstname[10], lastname[10];
scanf(�%9s %9s�, firstname, lastname);

If scanf didn't stop at white spaces, the first example
would try to stick things like �Wright 1961� into
�name�. It would never know when you were done
typing the string, and had started typing something
else.

Assigning Strings the Wrong Way:

#include <stdio.h>

int main () {

 char s[10] = "Testing";

 char t[10];

 t = s;

 printf("%s", t);

}

Since strings are arrays, we also need to take care when
assigning values to them in our programs:

�In function �int main()�:
error: ISO C++ forbids assignment of arrays�

This won't
work!

This won't
work!

Try it!

Again, remember that �t� and �s� are arrays, not
single values.. The C compiler is telling you that it
can't figure out what you want to do here.

What we're trying to do is make each element of the
�t� array be the same as the corresponding element
of the �s� array. If these were arrays of numbers, we
could write a �for� loop to go through all of the array
elements and do that, but there's an easier way to do
it with character arrays.

Assigning Strings the Right Way:

#include <stdio.h>

int main () {

 char s[10] = "Testing";

 char t[10];

 sprintf(t, “%9s”, s);

 printf("%s", t);

}

We can use the �sprintf� function to �print� the value of one string into
another string:

This says:
�Print the
value of s

into t.�

This says:
�Print the
value of s

into t.�

Try it!

�sprintf� is another variation on �printf�. The first
argument of sprintf is just the name of a character
string.

We could also to things like this:

sprintf (t, �Hello world!\n�);

which would put the text �Hello world!\n� into t.

Internally, sprintf just does the same thing as looping
through all of the characters in the arrays, one by
one, and setting their values.

scanf (“%9s”, string);

fgets (string, 9, stdin);

OK if no spaces in string:

If you need to read spaces or tabs:

String Recap:

if (!strcmp(s, t)) {...}

sprintf(t, “%9s”, s);

� Comparing Strings:

� Reading Strings:

� Assigning Values to Strings:

Writing past the end of a string array is a very
common program bug. It often leads to crashes, and
is responsible for many security flaws. Sticking to
the methods above will help you avoid these
problems in your programs.

Functions

Despite what you may think after these lectures, C is
really a very simple language with a small
vocabulary. It's extended through functions. These
are found in standard libraries that are usually
installed along with the compiler, but you can also
create functions of your own to extend C's
functionality.

�Intrinsic� Functions:

printf sqrt

fprintf cos

scanf sin

fscanf rand

fgets pow

The functions we've used so far are sometimes called �intrinsic�
functions. They're standard functions that available as soon as
you install a C compiler on a computer.

There are lots of other intrinsic functions. But C also lets
us define our own functions, to do things peculiar to our
own programs.

r = sqrt(x*x + y*y + z*z);

r = radius(x,y,z);

Wouldn't it be nice...

In the galaxy example I sent out last week, we did a lot of the
following:

Wouldn't it have been nice if we had a function that would just
give us the value of r? Something like this, maybe:

Maybe you can already see a couple of the
advantages of a function like this:

�It can make our code more readable, so it's easier
for us (and others) to understand in the future.

�It can reduce the likelihood of typos. Instead of
typing out some long procedure every time we need
it, and possible mis-typing something, we type the
name of a function that will always do the same
thing, every time we use it.

These cities are on a 2-d map, so we only have two
coordinates for each city's position.

Let's look at a program to find the total distance.

There's a lot of repetition in this program, and a lot of
opportunities for typos! Also, it's really hard to read.
Anyone else would have a hard time figuring out
what this program is supposed to do.

Wouldn't it be nicer if we just had a �distance�
function that would tell us the lengths?
Unfortunately, C doesn't provide that, but maybe we
can write our own.

Defining a New Function:

double distance (double a[], double b[]) {

 // Calculate distance from point A to point B.
 double d=0;

 int i;

 for (i=0; i<2; i++) {

 d += pow(b[i]-a[i], 2);

 }

 d = sqrt(d);

 return(d);

}

Type of value the
function will produce.

Type of value the
function will produce.

Function arguments (two arrays of doubles, in
this example).

Function arguments (two arrays of doubles, in
this example).

Returns the calculated value to our program.Returns the calculated value to our program.

Here's one way we might write a function to make our program
easier:

The general form of a function definition is:

type name(type1 arg1, type2 arg2,) {
...

}

We'll be able to use the function just the same way
we use functions like �sqrt�:

x = sqrt(y);

We give the function some arguments, and it gives
us back a value.

#include <stdio.h>

#include <math.h>

double distance (double a[], double b[]) {

 // Calculate distance from point A to point B.
 double d=0;

 int i;

 for (i=0; i<2; i++) {

 d += pow(b[i]-a[i], 2);

 }

 d = sqrt(d);

 return(d);

}

int main () {

....

Adding the Function to Our Program:

Let's add the function just
above our �main()�
statement.

Notice the similarity?

Let's add the function just
above our �main()�
statement.

Notice the similarity?

You can put the function definition in other places,
too, but for now let's put it here.

Notice that �int main() {...}� looks like a function
definition too? That's because �main� really is just
another function. When we run our C program, it
invokes the �main� function.

In a later talk we'll see that we can even give
arguments to �main�, and we can make use of any
value it might return.

So here's our complete program, using the
�distance� function. I think it's much more readable
now, don't you?

Functions have lots of other advantages. I hope we
have time to talk about some of them later.

Practice Problem:

Can you modify the �distance� function so that it can
calculate distances in higher dimensions? Hint: add
another argument that specifies the number of
dimensions.

Give this a try! Can your function calculate the
distance between two points in a ten-dimensional
Euclidean space?

The End

Thanks!

