

Introduction to
Computational

Physics
Meeting 7: Numerical Ingegration

Today:
� Computer Calculus.
� Test your knowledge!

Welcome back!

Remember that you can try out these programs using your
account on Galileo. For instructions on how to use Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we'll see one way to write a program that computes the
values of definite integrals, and we'll pause for a while to look at
what we've learned so far.

Let's get started!

Last Week's Practice Problem:

�Can you modify the 'distance' function so that it can
calculate distances in higher dimensions? Hint: add
another argument that specifies the number of
dimensions.�

double distance (int n, double a[], double b[]) {
 double d=0;
 int i;
 for (i=0; i<n; i++) {
 d += pow(b[i]-a[i], 2);
 }
 d = sqrt(d);

 return(d);
}

So, we just need to make two minor changes to our
function. With these changes, we can now use this
function to comput distances in Euclidean space for
any number of dimensions!

Numerical Integration

�
n=0

�

sin (x)eixdx=...

An integral is conceptually simple: it's just adding
things up. (The integral sign is a stretched-out �S�,
for �Sum�.) Since computers can add things very
quickly and accurately, you'd think they'd be good at
integration.

There are several ways that a computer program can
compute an approximate value for a definite integral.
Today we're going to look at one of them, called �The
Trapezoid Rule�.

What's an Integral?

�
A

B

f (x)dx

f(x)

The integral of a f(x) below is just the area under the curve.

A B x

f(A)
f(B)

You can think of the integral as
the sum of the areas of an
infinite number of rectangles,
each of infinitesimal width dx.

Some are tall and some are
short, depending on the value of
f(x). The area of each is f(x)*dx.

For many functions, we can calculate these
integrals mathematically. Sometimes
though, the integral is difficult or impossible
to solve. Sometimes we don't even know
what the function is: we just have some data
points that define it.

In such cases, we might use a computer
program to estimate the value of the integral
by adding up a finite number of rectangles
(or other shapes). This often gives us a
good-enough approximation to the integral's
true value.

First Approximation: Rectangles

A B x

f(A)

f(A+ x�)

f(A+2 x�)

�x

We can try to approximate
this with a finite number of
rectangles. We might get
good results if we used a lot
of rectangles.

We could try estimating the area by just
replacing infinitesimal �dx� with a finite-sized
��x�. Then we could just split the range
from A to B into some number of slices and
compute the area �x * f(x) for each of these.

This would probably work if we had enough
slices, but (as you can see above) we might
not get a very accurate result if we don't
have enough.

Maybe we can find another shape that fits
better....

Second Approximation: Trapezoids

A B x

f(A)

f(A+ x�)

f(A+2 x�)

�x

f(A+3 x�)

We can usally get good
results with fewer slices if
we use trapezoids instead
of rectangles.

A trapezoid is a four-sided shape with two
parallel sides (the other sides may or may
not be parallel.)

With trapezoids instead of rectangles, we
can often get a more accurate estimate of
the area with fewer slices. If you flip back
and forth between this page and the last,
you can see that, even with only three
slices, the trapezoids already do a
noticeably better job of approximating the
area under the curve.

Finding the Area of a Trapezoid:

f (x
0
+� x)

f (x
0
)

f (x
0
)+ f (x

0
+� x)

2

�x �x
Green and blue areas are both equal to:

� x
f (x

0
)+ f (x

0
+� x)

2

The area of one of these trapezoids is the same as the area of a
rectangle with height equal to the average height of the trapezoid:

Chop off
this...

...and put
it here

You can see how this makes sense. Look at the
green trapezoid. Imagine chopping off the top of it,
and rotating it down to fill the area below. Voila!
We've made a rectangle.

Now that we know how to calculate the area of each
trapezoid, we just need to loop through all of the
slices and add up the areas.

#include <stdio.h>
#include <math.h>
double func(double x) {
 double value;
 value = sin(x);
 return(value);
}
int main () {
 double x, delta, area=0;
 double height;
 double xmin=0.0, xmax=M_PI;
 int i, nsteps=100;

 delta = (xmax-xmin)/nsteps;
 x = xmin;
 for (i=0; i<nsteps; i++) {
 height = (func(x) + func(x+delta)) / 2.0;
 area += delta * height;
 x += delta;
 }

 printf ("Integral from %lf to %lf is %lf\n",
 xmin, xmax, area);
}

Function to
integrate

Function to
integrate

mainmain

Find x.�Find x.�

Start at xmin.Start at xmin.

x=x+ x.�x=x+ x.�

Find area of slice
and add to total.

Find area of slice
and add to total.

sin(x)

integrate.cpp:

Try it!

We could change our definition of �func� to make it
any function we want. In this case, I've just picked
sin(x) because we know how to integrate that
mathematically, so we can check our program's
estimate.

This technique won't work well for all functions.
Imagine a function with a tall, narrow spike, for
example. The trapezoids might end up just
straddling the spike, and never �seeing� it.

It would also have trouble with anything that goes to
infinity. Think about trying to integrate 1/x from zero
to one.

Our program will work for a wide range of
well-behaved functions, though.

“Integral from 0.000000 to 3.141590 is 1.999836”

The Output:

5 trapezoids 100 trapezoids

From calculus, we know that the answer should
really be 2.

As you can see, it's hard to distinguish between the
shape made by 100 trapezoids and the actual sine
function.

If you try this program with different numbers of
slices, you'll find that the result is always somewhat
smaller than the actual value (2). This is because
the function we've chosen (sin(x)) is
concave-downward in the range over which we're
integrating. As you can see from the figures above,
there will always be a litle space between the top of
the trapezoids and the curve of the actual function.
As we add more slices, the gap will get smaller and
smaller and our result will asymptotically approach
the true value.

Wouldn't it be Nice...?

Wouldn't it be nice if we could change tne number of boxes or xmin
and xmax without having to recompile our program? We've already
seen how we could do that by asking the user to type in numbers.
But there's another way.

What if we could just give our program some parameters on the
command line, like this:

./integrate 100 0.0 3.14159
nboxes xmin xmax

We can really do this, because C lets you give arguments to the
�main� function.

Whenever you run a program, the operating system
automatically gives the program any arguments you
type on the command line. To use these arguments,
we need to make a few changes to our program.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
...
int main (int argc, char **argv) {
 double x, delta, area=0;
 double height;
 double xmin, xmax;
 int i, nsteps;

 nsteps = atoi(argv[1]);
 xmin = atof(argv[2]);
 xmax = atof(argv[3]);

....

Giving Arguments to Your Program:

integrate2.cpp

Here's how you could modify your previous program to make it accept
command-line arguments:

./integrate2 100 0.0 3.14159
Compile it, then run it like this:

Need stdlib for atoi and atofNeed stdlib for atoi and atof

This list will always be the
same, for any program that
uses command-line arguments.

This list will always be the
same, for any program that
uses command-line arguments.

atoi and atof are �ASCII to
integer� and �ASCII to float�.

atoi and atof are �ASCII to
integer� and �ASCII to float�.

integer, plus zero or more strings.integer, plus zero or more strings.

Try it!
argv[1] argv[2] argv[3]

As we noted last time, �main� is just another C
function, and like other functions it can have
arguments. The arguments of �main� will always be
the same: first, and integer (�argc�) which tells you
the number of command-line arguments, then a list
of strings (represented by char **argv) which
contains any parameters you give when you run the
program.

The parameters are given to the program as
character strings. If we want to make numbers out of
them, we need to use the function atoi (for integers)
or atof (for floating-point numbers).

stdlib.h is needed because that's where the functions
atoi and atof are defined.

int main (int argc, char **argv) {
 double x, delta, area=0;
 double height;
 double xmin, xmax;
 int i, nsteps;

 if (argc != 4) {
 printf ("Syntax: %s nsteps xmin xmax\n",
 argv[0]);
 exit(1);
 }

 nsteps = atoi(argv[1]);
 xmin = atof(argv[2]);
 xmax = atof(argv[3]);

....

Checking Syntax:

integrate3.cpp

We can further modify the program so that it checks to make sure we've
supplied all of the necessary arguments:

Have we supplied
enough arguments?

Have we supplied
enough arguments?

argv[0] is just the
name of the program

argv[0] is just the
name of the program

Exit, with an
error status

Exit, with an
error status

Try it!

If you try to run the program on the previous page without
giving it any command-line parameters, it will crash with an
error message. (�Segmentation fault�).

Above, we show how to handle this more gracefully. Instead
of allowing the program to crash, we check to see if the user
gave us the required parameters. If not, we write out a polite
error message and stop the program.

Note that argv[0] actually contains the name of the program,
so we can use it as part of our message.

The �exit� function just stops the program. The argument we
give it (�1� in this case) is a status inticator that's passed back
to the operating system. Zero means that the program
completed successfully. Anything else means that an error
occurred.

Making it Faster:

A B x

f(A)

f(A+ x�)

f(A+2 x�)

�x

f(A+3 x�)

�
A

B

f (x)�

� x
f (A)+ f (A+� x)

2
+� x

f (A+� x)+ f (A+2� x)
2

+�+� x
f (A+(n�1))+ f (B)

2

�
A

B

f (x)�� x [f (A)+ f (B)
2

+�
i=1

n�1

f (A+i� x)]

Finally, note that we can make
our integration program faster
by realizing that we've been
evaluating each f(x) twice.

 We can do a little algebra and
eliminate the duplication:

As you can see from the first line of math above, we
calculate f(A+�x) in the first term, and then again in
the second term. We similarly calculate all of the f(x)
values twice, except for f(A) and f(B). The bottom
line of math shows how we can avoid this.

For many things, the duplication of effort won't
matter. But imagine a case where we have many
slices, and where f(x) is a complicated function that
takes a long time to calculate. Then we might
benefit from the streamlined version of the
calculation.

We won't go through this here, but today's practice
problem is to modify our program so that it uses the
streamlined technique above.

Let's take a look at what we've learned so far. Here
are a few quiz questions for you.

The next five pages will have the questions without
answers. At the end of this document I've put the
answers.

1. How would you write a program that prints out
�Hello World!� ?

2. What format specifier would you use to print an
integer variable?

3. What's wrong with the following?:

double x;
scanf(“%lf”,x);

4. What's the index of the last element in an array
defined like this?:

int values[10];

1. How would you write a loop that prints out the
numbers 1 through 10?

2. What's wrong with the following?:

if (x=1){
printf(“X equals one\n”);

}

3. What's wrong with this?:

double x[3];
x[1] = 1.0;
x[2] = 2.0;
x[3] = 3.0;

1. Is it safe to assume that variables have a value of
zero before they're used? Why or why not?

2. What C function would you use to open a file?

3. What C function would you use to write into a file?

4. Why won't the following program compile?:

#include <stdio.h>
int main () {
int i=0
printf (“The value of i is %d\n”, i);

}

1. What Linux command would you use to compile a
C or C++ program?

2. What Linux command would you use to edit or
create the file �program.cpp�?

3. What Linux command would you use to copy
file.cpp to file2.cpp?

4. What Linux command would you use to list your
files?

1. Why won't this work?:

char numbers[5] = “12345”;

2. What's the right way to do the following?:

char a[] = “stuff”;
char b[] = “stuff”;
if (a == b) {
printf(“They're equal\n”);

}

3. What format specifier would you use to write a
character string?

Practice Problem:

Take a look at the �Making it Faster� slide from earlier today. Can you
modify your integration program so that it implements the faster way
of calculating the area?

Give this a try. Do you get the same results? You
should.

The End

Thanks!

(Answers to questions follow....)

1. How would you write a program that prints out
�Hello World!� ?

2. What format specifier would you use to print an
integer variable?

3. What's wrong with the following?:

double x;
scanf(“%lf”,x);

4. What's the index of the last element in an array
defined like this?:

int values[10];

Answers:
1.
#include <stdio.h>
int main () {

printf (“Hello World!\n”);
}

2. %i

3. You need a “&” before the x in the
scanf statement. Remember, numeric
variables always need a “&” in scanf.

4. 9. The indices go from 0 to 9.

1. How would you write a loop that prints out the
numbers 1 through 10?

2. What's wrong with the following?:

if (x=1){
printf(“X equals one\n”);

}

3. What's wrong with this?:

double x[3];
x[1] = 1.0;
x[2] = 2.0;
x[3] = 3.0;

Answers:
1.
for (i=0;i<10;i++){
 printf (“%d\n”, i+1);
}

2. It should be (x==1). Use �=� to assign values to
things, but �==� to compare things.

3. The indices should be 0,1,2. There is no x[3].

1. Is it safe to assume that variables have a value of
zero before they're used? Why or why not?

2. What C function would you use to open a file?

3. What C function would you use to write into a file?

4. Why won't the following program compile?:

#include <stdio.h>
int main () {
int i=0
printf (“The value of i is %d\n”, i);

}

Answers:
1. No. Before we set a variable's value, it has
whatever random stuff was left in that memory
location by the last program that ran.

2. fopen, like:
FILE *output = fopen(“myfile.dat”,”w”);

3. fprintf, like:
fprintf(output, “%lf %lf\n”, x, y);

4. The line �int i=0� should have a semicolon at the
end!

1. What Linux command would you use to compile a
C or C++ program?

2. What Linux command would you use to edit or
create the file �program.cpp�?

3. What Linux command would you use to copy
file.cpp to file2.cpp?

4. What Linux command would you use to list your
files?

Answers:
1. g++ -Wall -o file file.cpp

2. nano program.cpp

3. cp file.cpp file2.cpp

4. ls

1. Why won't this work?:

char numbers[5] = “12345”;

2. What's the right way to do the following?:

char a[] = “stuff”;
char b[] = “stuff”;
if (a == b) {
printf(“They're equal\n”);

}

3. What format specifier would you use to write a
character string?

Answers:
1. It should be at least �numbers[6]� to leave room for
the NUL character that has to indicate the end of the
string.

2. Instead of �a == b�, you should use strcmp, like
this:
if (!strcmp(a,b)) {

3. %s

