

Welcome back!

Remember that you can try out these programs using your
account on Galileo. For instructions on how to use Galileo, see:

http://galileo.phys.virginia.edu/compfac/courses/comp_intro/connecting.html

Today we're just going to be sweeping up odds and ends that
we haven't been able to cover earlier.

Let's get started!

Last Week's Practice Problem:
�Take a look at the �Making it Faster� slide from earlier today. Can
you modify your integration program so that it implements the faster
way of calculating the area?�

A B x

f(A)

f(A+ x�)

f(A+2 x�)

�x

f(A+3 x�)

�
A

B

f (x)�� x [f (A)+ f (B)
2

+�
i=1

n�1

f (A+i� x)]

double sum = 0;
double x = xmin;
for (i=1; i<nsteps; i++) {
 sum += func(x+delta);
 x += delta;
}
area = delta*((func(xmin) +
func(xmax))/2.0 + sum);

Here's one way we could
modify our program:

Here's one way we could
modify our program:

We've just implemented the shortcut described last
week, which avoids calculating most f(x) values
twice. If you modify your �integrate� program as
shown above, you should get the same answers, but
slightly faster.

Part 1: VariablesMore on Variables

OK, now let's take a closer look at variable
definitons.

More Variable Types:
C/C++ are strongly typed programming languages.

This means all variables must be declared as a particular data type
before they can be used in your program.

The C language supports the following variable or data types:

Integers short A �small� integer

int A �medium� integer

long A �large� integer

unsigned short Positive-definite versions
of the types above.unsigned

unsigned long

Floating-point
numbers

float A real (floating-point)
number

double A �double precision�
floating-point number

long double Even higher precision.

Characters char A character of text.

Until now we've used �int�, �double� and �char�
variables, but as you can see there are several
others.

The C/C++ standard doesn't tell us exactly how big
the memory area for each of these types should be.
It just says, for example, that �int� must be at least as
big as �short�, and �long� must be at least as big as
�int�. Different compilers will, in general, assign
different sizes to these variable types.

On Galileo, an �int� can hold numbers between about
-2 billion and 2 billion. An �unsigned� (also called
�unsigned int�) can hold numbers from zero to about
4 billion.

You can specify that a variable is a constant by putting the word
�const� in front of the variable definition:

#include <stdio.h>
// Define constant values. Compiler will protect these:
const double RADIUS_OF_EARTH = 6378.1; // in km
const double E = 2.71828182845905;

int main() {
 printf(“The radius of Earth = %lf”,

RADIUS_OF_EARTH);
}

Constant Data Types:

If your program tries to alter the value of a �const� variable, the
compiler will let you know about it. Using const is generally better
practice than using preprocessor macros.

Const values can help catch programming errors, so
they're a good thing to use whenever you're sure that
a variable shouldn't change.

Variable Storage:

A variable declaration determines how its data are physically stored in
memory.

In general the details of this storage differ from machine type to
machine type, OS to OS, and programming language to programming
language.

All data are ultimately stored as binary patterns, but the format differs
depending on the variable's type.

int i = 4; 00000100 00000000
00000000 00000000

float f = 4; 00000000 00000000
10000000 01000000

char c = '4'; 00110100

Here's how
one compiler,
on one
computer,
stores the
value �4� when
it's an int, float
or char:

Above, we see how the same number is stored when
it's interpreted in three different ways. As you can
see, the results are very different.

If we read the data in the top right box, but interpret it
as a floating-point number instead of an integer, we'll
get some unexpected value.

Casting Variables in C:

In C parlance, converting a data from one type to another is called
�casting�.

Casting may increase or decrease the precision of your data storage.

Consider:

double a=101.1;
int i = 0;

i = a;
a = i+1;

Downward cast, setting i equal
to 101 (lower precision). A cast
to int always truncates!

Upward cast, setting a to a value
of 102.0 (higher precision).

These are called implicit casts. We did no explicit conversion, the
compiler does it for us.

Similarly, when we do arithmetic C decides whether
the result should be integer or floating-point based
on how we write the numbers. For example �3/2�
would be interpreted as integer division by C, and
the result would be �1�. On the other hand �3.0/2.0�
would be seen as floating-point math, and the result
would be �1.5�.

Avoiding Implicit Casts:
Upward casting usually proceeds without complaint, but automatic or
implicit downward, resolution-reducing casts, can generate a compiler
warning:

10: double a=101.1;
11: int i = 0;
12: i = a;

~/demo> g++ cast.cpp
cast.cpp: In function `int main()':
cast.cpp:12: warning: assignment to `int' from `double'

Implicit downward cast,
giving i a value of 101
(lower precision).

cast.cpp

Try to avoid implicit casts. Good programming style uses explicit casts,
where data are consciously managed by the programmer.

Even upward casts can generate warnings from
some versions of the g++ compiler.

Explicit Casting:
Here's an example of an explicit cast to control conversion of data types:

10: float a=101.1;
11: int i = 0;
12: i = (int) a;

Explicit downward cast
(i = 101).

The syntax for implicit casts is
�(type)variable�. For example:

i = (int) a;
g = (float)i;
h = (double)a;

When you make an explicit cast, the compiler assumes you know what
you're doing, and doesn't generate any warning messages.

Note that the compiler is unlikely to complain about double/float casts.
It's good practice to always do your own casting, rather than relying on
implicit casts. To help with this, make sure you have the same data
types on right and left side of each assignment statement (�=� sign).

This is analogous to checking for proper units in Physics.

The �sizeof� Statement:

The �sizeof� statement can be used to find out the number of bytes
used by a variable or a data type.

sizeof(int) returns 4 4 bytes used to store an integer

sizeof(double) returns 8 8 bytes used to store a double

sizeof(char) returns 1 1 byte used to store a char

sizeof(5/2) returns 4 It's an integer

sizeof(5/2.0) returns 8 It's a double

In general, you'll get different results for the same data type on
different computers. The sizes vary depending on operating system,
compiler and computer architecture.

Results for g++ on Galileo:

Note the example of automatic type conversion. The
last line uses an integer and a double constant. The
result is a double. At compile time the highest
precision data type sets the resulting data type.

It's also interesting to look at sizeof(short), sizeof(int)
and sizeof(long), to see how they differ. The C
standard doesn't define how big they should be, or
even say that �long� has to be any bigger than �int�. It
just says that each type in this series must be at
least as big as the one preceding it. Some compilers
make them all the same size.

Debugging

Now let's talk about finding bugs in our programs.

As you can see from the diagram, g++ does several different
things when you compile a program:

� The �preprocessor� is the thing that inteprets lines like
�#include <stdio.h>�. When the preprocessor sees something
like this, it fetches a file called stdio.h and inserts it into the
program at this point, just as though you'd typed it.

� The �compiler� is the part that actually converts C code into
binary code.

�The �linker� looks through a set of �libraries� full of
pre-compiled functions. It looks for things like �printf�, �scanf�
and all of the other functions we've talked about. When it finds
the code for a function your program uses, it inserts it into the
binary output of the �compiler�, at the appropriate place.

Any of these parts can generate error messages.

Compile-time Bugs:

Rule of: thumb When you get a large number
of error messages from the compiler, just look
at the first one.
Errors cascade, so one bad line will corrupt
many following lines.

gmake l2linux

gmake[1]: Entering directory `/root/code/ l2linux'
g++ -g -D_L2_ON LINE_ -DLIN UX -DDEBU GLVL=5 -I ../include/ -c -o ./obj/MemoryMap.o src/MemoryMap.cpp
src/MemoryMap.cpp:26: parse error before `:: ' token
src/MemoryMap.cpp:28: `len' was not declared in this scope
src/MemoryMap.cpp:28: ISO C++ forbids declaration of s̀etSize' with no type

src/MemoryMap.cpp:29: ISO C++ forbids declaration of _̀location' with no type
src/MemoryMap.cpp:29: invalid conversion from `void*' to `int'
src/MemoryMap.cpp:30: parse error before `if'

src/MemoryMap.cpp:32: `perm' was not declared in this scope
src/MemoryMap.cpp:32: ISO C++ forbids declaration of s̀etPermissions' with no
 type
src/MemoryMap.cpp:35: parse error before `if'

src/MemoryMap.cpp:43: syntax error before `++' token
src/MemoryMap.cpp:44: l̀oc' was not declared in this scope
src/MemoryMap.cpp:44: ISO C++ forbids declaration of `map' with no type
src/MemoryMap.cpp:45: parse error before `}' token

src/MemoryMap.cpp:48: syntax error before `::' token
src/MemoryMap.cpp:50: ISO C++ forbids declarat ion of `setPermissions' with no
 type
src/MemoryMap.cpp:50: invalid conversion from `const char*' to `int '

src/MemoryMap.cpp:53: parse error before `if'
src/MemoryMap.cpp:62: syntax error before `++' token
src/MemoryMap.cpp:66: syntax error before `::' token
src/MemoryMap.cpp:69: syntax error before `--' token

src/MemoryMap.cpp:75: syntax error before `::' token
src/MemoryMap.cpp:77: ISO C++ forbids declaration of _̀location' with no type
src/MemoryMap.cpp:77: `addr' was not declared in this scope
src/MemoryMap.cpp:77: _̀length' was not declared in this scope

src/MemoryMap.cpp:77: _̀permissions' was not declared in this scope
src/MemoryMap.cpp:78: `_memdev' was not declared in this scope
src/MemoryMap.cpp:78: `_base' was not declared in this scope
src/MemoryMap.cpp:79: parse error before `if'
src/MemoryMap.cpp:83: ISO C++ forbids declaration of `printf ' with no type

src/MemoryMap.cpp:83: `int printf ' redeclared as dif ferent kind of symbol
/usr/include/stdio.h:300: previous declarat ion of `int print f(const char*, ...)
 '

src/MemoryMap.cpp:83: invalid conversion from `const char*' to `int '
src/MemoryMap.cpp:85: `_base' was not declared in this scope
src/MemoryMap.cpp:85: `addr' was not declared in this scope
src/MemoryMap.cpp:85: ISO C++ forbids declarat ion of `print f ' with no type

src/MemoryMap.cpp:85: redef init ion of `int print f '
src/MemoryMap.cpp:83: `int printf ' prev iously defined here
src/MemoryMap.cpp:85: init ializer list being treated as compound expression
src/MemoryMap.cpp:86: parse error before `return'

src/MemoryMap.cpp:96: syntax error before `::' token
src/MemoryMap.cpp:98: ISO C++ forbids declarat ion of `_locat ion' with no type
src/MemoryMap.cpp:98: redef init ion of `int _locat ion'
src/MemoryMap.cpp:77: ìnt _location' previously defined here

src/MemoryMap.cpp:98: `_length' was not declared in this scope
src/MemoryMap.cpp:98: `_permissions' was not declared in this scope
src/MemoryMap.cpp:99: `_memdev' was not declared in this scope
src/MemoryMap.cpp:99: `_base' was not declared in this scope

src/MemoryMap.cpp:100: parse error before ìf '
src/MemoryMap.cpp:104: ISO C++ forbids declarat ion of `print f ' with no type
src/MemoryMap.cpp:104: redef init ion of `int print f '
src/MemoryMap.cpp:85: `int print f ' previously def ined here

src/MemoryMap.cpp:104: invalid conversion from `const char*' to `int '
src/MemoryMap.cpp:106: `_base' was not declared in this scope
src/MemoryMap.cpp:106: ISO C++ forbids declarat ion of `print f ' with no type
src/MemoryMap.cpp:106: redef init ion of `int print f '

src/MemoryMap.cpp:104: `int print f ' previously def ined here
src/MemoryMap.cpp:106: init ializer list being treated as compound expression
src/MemoryMap.cpp:107: parse error before `return'
src/MemoryMap.cpp:113: ISO C++ forbids declaration of `printf ' with no type

src/MemoryMap.cpp:113: redef inition of ìnt printf '
src/MemoryMap.cpp:106: `int print f ' previously def ined here
src/MemoryMap.cpp:113: invalid conversion from `const char* ' to ìnt'
src/MemoryMap.cpp:115: _̀length' was not declared in this scope

src/MemoryMap.cpp:115: _̀base' was not declared in this scope
src/MemoryMap.cpp:115: ISO C++ forbids declarat ion of `printf ' with no type
src/MemoryMap.cpp:115: redefinit ion of `int printf '
src/MemoryMap.cpp:113: ìnt printf ' previously def ined here

src/MemoryMap.cpp:115: initializer list being treated as compound expression
src/MemoryMap.cpp:116: ISO C++ forbids declaration of `printf ' with no type
src/MemoryMap.cpp:116: redef inition of ìnt printf '
src/MemoryMap.cpp:115: ìnt printf ' prev iously defined here

src/MemoryMap.cpp:116: initializer list being treated as compound expression
src/MemoryMap.cpp:117: parse error before `}' token
src/MemoryMap.cpp:121: syntax error before `::' token
src/MemoryMap.cpp:123: ISO C++ forbids declaration of `_location' with no type

src/MemoryMap.cpp:123: redefinit ion of `int _location'
src/MemoryMap.cpp:98: `int _locat ion' previously def ined here
src/MemoryMap.cpp:123: invalid conversion from `void*' to `int'
src/MemoryMap.cpp:124: parse error before `}' token

src/MemoryMap.cpp:126: syntax error before `::' token
src/MemoryMap.cpp:129: parse error before `while'
src/MemoryMap.cpp:146: syntax error before `++' token
src/MemoryMap.cpp:152: ISO C++ forbids declarat ion of `unmap' with no type

src/MemoryMap.cpp:153: `loc' was not declared in this scope
src/MemoryMap.cpp:153: ISO C++ forbids declarat ion of `map' with no type
src/MemoryMap.cpp:153: redef init ion of `int map'
src/MemoryMap.cpp:44: ìnt map' previously def ined here

src/MemoryMap.cpp:154: parse error before `}' token
src/MemoryMap.cpp:158: syntax error before `:: ' token
src/MemoryMap.cpp:161: ISO C++ forbids declaration of `_base' with no type
src/MemoryMap.cpp:161: `tmpaddr' was not declared in this scope

src/MemoryMap.cpp:162: syntax error before `<<' token
src/MemoryMap.cpp:172: syntax error before `::' token
src/MemoryMap.cpp:176: syntax error before `<<' token
gmake[1]: *** [MemoryMap.o] Error 1

gmake[1]: Leaving directory `/root/code/ l2linux'
make: *** [default] Error 2

Here's an excerpt from the error messages
observed when compiling a complicated
piece of code.

This looks bad, but the first error gives us
the solution:

src/MemoryMap.cpp:26: parse error before ...

Looking around line 26, the programmer
found that line 25 was missing its semicolon.
Often one simple fix will clear up many errors.

(And often that simple fix is a semicolon!)

Some Common Compile-time Bugs:

My picks for the top 5 compile time errors:

5) Missing header file or #include statement,

4) Forgot to declare a variable,

3) Missing {} or () or comma,

2) General typo,

1) Missing semicolon!
;;

One variation on #3 is �mixing { with)� or vice-versa.
Under �general typo�, the most common thing is
mis-typing a variable's name or the name of a
function.

Some Common Run-time Bugs:

My picks for the top 5 run time errors:

5) Missing �&� in a scanf statement,

4) int x[5]; x[5]=1;

3) Wrong format specifier in printf,

2) Didn't open a file before writing/reading,

1) = instead of ==

For #4, the last element of x is x[4], not x[5]!

For #3, if you type �printf(�%d�,x)� but �x� isn't an
integer, printf will still print out something, but it won't
be what you expect.

Tracking Down Run-time Errors:

Your runtime error messages will typically give you little to go on in
tracking down the problem.

This coding error:
int i;
scanf ("%d", i); // should have used &i

generates this output:
Segmentation fault ---- that's it! No line number, even.

You can try narrow down error locations by placing printf's in your code:

int i;
printf(�about to do the read\n�);
scanf ("%d", i); // should have used &i
printf(�finshed the read\n�);
etc...

Even if you have no idea where the error is, you can
sprinkle �printf� statements through your program,
saying things like �OK at 1�, �OK at 2�, etc. Then
compile the program and run it, and look to see
which print statements are acted upon. If this
narrows down the search for the error, then add
more print statements in the problematic area, and
keep repeating until you've found the problem.

Finding Documentation:

There's no central source for all information about C,
but there are several good places to look for help.

Lionel Ritchie
'80s Pop Icon

Dennis Ritchie
Inventor of C

Hello? Is it me
you're looking for?

No, Lionel!
They want ME.

Dennis Ritchie invented C about 45 years ago, and
it's been widely adopted. Every major operating
system (Windows, OS X and Linux) is written in C,
as well as most major applications (MS Word and
Excel, Adobe Photoshop and Illustrator, and
thousands more). The advantage of C is that it's
easy to create a C compiler for new kinds of
computers.

Without Lionel Dennis Ritchie, the world woud be
unimaginably different today. C code built the
Internet. It build the commodity computer market
that gave us cheap desktop and laptop computers,
and cell phones and tablets. It enabled all of the
modems, smart TVs, and computer graphics that
entertain us.

Here are a few good books about C or programming in general:
� The C Programming Language, by Brian Kernighan and
Dennis Ritchie. This thin book is Dennis Ritchie's own
description of the language.

� Numerical Recipes in C, by Press et al. This is a valuable
compendium of programming recipes: How to do integration;
How to solve systems of linear equations; How to sort things;
How to find roots; and on and on.

� Data Reduction and Error Analysis for the Physical Sciences,
by Phillip R. Bevington. This book has very clear descriptions
of many data analysis techinques, including fitting data, and is
a good introduction to error analysis.

You can find all of these books (in some edition or other) in
libraries around grounds. Generally they're on reserve in the
Physics library.

http://galileo.phys.virginia.edu/cgi-bin/finddoc

This web page on Galileo draws information from
many sources. Feel free to use it to look up
documentation. In the example above, I searched
for documentation about the �strcmp� function.

If you don't remember the URL, you can get to this
page by going to Galileo's main page and clicking on
the �documentation� link at the left-hand side of the
page.

Documentation: Command-line help:

~/demo> ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.
 -a, --all do not ignore entries starting with .
 -A, --almost-all do not list implied . and ..
 --author with -l, print the author of each file
 -b, --escape print octal escapes for nongraphic characters
 --block-size=SIZE use SIZE-byte blocks
 -B, --ignore-backups do not list implied entries ending with ~
 -c with -lt: sort by, and show, ctime (time of last
 modification of file status information)
 with -l: show ctime and sort by name
 otherwise: sort by ctime
 -C list entries by columns
 --color[=WHEN] control whether color is used to distinguish file
 types. WHEN may be `never', `always', or `auto'
 -d, --directory list directory entries instead of contents,
 and do not dereference symbolic links
 -D, --dired generate output designed for Emacs' dired mode
 -f do not sort, enable -aU, disable -lst
 -F, --classify append indicator (one of */=>@|) to entries
.....

Many commands will tell you about themselves if you give them a �-h�
or �--help� switch on the command line. For example:

Note that this is just a convention, and not all
commands will honor it. Linux commands were
written by many people over many years, and only
recently began adopting standard arguments.

Documentation: Man Pages:

~/demo> man 3 strcmp

�Man Pages� (online documents in a standard format) are available for
most common commands. The �man� command will show these to
you, one page at a time. To exit from man, type �q� (for �quit�). To go to
the next page, press the spacebar. To go back up, press �b�.

NAME
 strcmp, strncmp - compare two strings

SYNOPSIS
 #include <string.h>

 int strcmp(const char *s1, const char *s2);

 int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
 The strcmp() function compares the two strings s1 and s2. It returns
 an integer less than, equal to, or greater than zero if s1 is found,
 respectively, to be less than, to match, or be greater than s2.

 The strncmp() function is similar, except it only compares the first
 (at most) n characters of s1 and s2.

RETURN VALUE
 The strcmp() and strncmp() functions return an integer less than, equal
 to, or greater than zero if s1 (or the first n bytes thereof) is found,
 respectively, to be less than, to match, or be greater than s2.

Most C functions are in
section 3 of the man pages.

Most C functions are in
section 3 of the man pages.

If you leave out the �3�, you'll just see the first
documentation that matches �strcmp�. This may be
the C function you're looking for, or it may be
something else (possibly also interesting!).

For information about using the man command, don't
hesitate type type �man man�.

Man pages are the most common type of online
documentation for Unix-like operating systems.

Documentation: Info Pages:

~/demo> info strcmp

�GNU Info Pages� are another standard format for online documentation. Fewer
commands have info pages, but when present this documentation may be more
extensive than the command's man page. Info pages are arranged in a tree, with
links between documents, much like a primitive version of the World Wide Web.

5.5 String/Array Comparison
===========================

You can use the functions in this section to perform comparisons on the
contents of strings and arrays. As well as checking for equality, these
functions can also be used as the ordering functions for sorting
operations. *Note Searching and Sorting::, for an example of this.

 Unlike most comparison operations in C, the string comparison
functions return a nonzero value if the strings are _not_ equivalent
rather than if they are. The sign of the value indicates the relative
ordering of the first characters in the strings that are not
equivalent: a negative value indicates that the first string is "less"
than the second, while a positive value indicates that the first string
is "greater".

 The most common use of these functions is to check only for equality.
This is canonically done with an expression like `! strcmp (s1, s2)'.

 All of these functions are declared in the header file `string.h'.

 -- Function: int memcmp (const void *A1, const void *A2, size_t SIZE)
 The function `memcmp' compares the SIZE bytes of memory beginning...

Some commands have only info pages. These
commands will typically have a minimal man page
that only refers you to the info page.

For information about navigating around inside info, try
typing �info info� at the command line.

More Techniques:

Here are a few useful numerical techniques that we
didn't have time to cover, but which you already have
the skills to use (or almost so).

Relaxation:
Many physics problems require solving Laplace's equation with some
boundary conditions.

� 2�=0

Laplace's equation is just:

In a program, we can
solve this by creating an
array of � values,
assigning boundary
values where we know
them, then looping
through the other
elements of the array and
averaging.

Eventually, the system
�relaxes� into a stable
state, and we have our
answer.

2-d array of
temperature

values

Temperatures at boundaries

We could define the 2-d array like this:

double temp[10][10];

This would give use a 10x10 array of temperature
values.

In this example, we convolve the image data with the function in
the center (the laplacian of a gaussian). This tends to enhance
the points that are near boundaries and suppress others, thus
detecting the edges of the things in the picture. You can
imagine that this might be useful in processing astronomical
images, or images of cells in Biology.

Convolution integrals turn up in many places:

They help us predict the response of an optical system or an
electrical circuit to an input signal, they're useful for creating
filters for digital image or audio processing, and they help us
describe the time-evolution of a system of particles through
quantum mechanics.

Convolution integrals are very common in science and
engineering. You'll find them all over the place.

Fourier Transforms:

Frequency (Hz)

lo
g
(P

o
w

e
r)

lo
g
(P

o
w

e
r)

Time (s)

Fourier transforms let us time series
data into frequency coordinates, and
back again.

A library of functions, called FFTW
makes this easy in C programs. To
use it:

� include the <fftw3.h> header file, and

� link your programs with �-lfftw3�.

Tiny Tim

�Tiptoe Through the Tulips�

What if there were an annoying 60-Hz hum in our
recording? We could remove it by transforming into
the �frequency domain�, setting the values of the
frequency spectrum to zero around 60 Hz, then
doing a reverse Fourier transform to get a modified
sound recording without the annoying hum.

Fftw is one of many libraries that aren't part of the
standard C distribution. To use these libraries, we
have to tell g++ to look for them by appending things
like �-lfftw3� to the g++ command line.

If you go further in programming, you'll learn how to
create and use your own libraries.

Things We Didn't Have Time For:

Now for a few C concepts that we just didn't have
time to cover.

Structures:
In addition to the regular variable types like �int� and �double�, C
lets us define our own custom-made types for variables, and
pack multiple pieces of data into them.

For example, we could define a 50-element array called �state�
that would hold all of our census data:

struct {
 int population;
 double income; // Avg/pers./yr.
 double area; // In sq. miles.
 double birthrate; // Per year.
 double deathrate; // Per year.
} state[50];

state[0].population = 1234567;
state[0].income = 40280.0;
state[0].birthrate = 1280.5;
state[0].deathrate = 1280.1;

Note that we could do something similar by just
having a bunch of arrays:

int population[50];
double income[50];
double area[50];

and so on, and then remembering that population[23]
goes with income[23] and area[23].

It's often a lot clearer to use structures, though.

Pointers:

int main() {
 double number = 3.1415;
 double *nptr;

 nptr = &number;

printf(“The value is %lf\n”,
 *nptr);

 return(0);
}

The value is 3.1415

You can refer to data by memory location using �pointer� variables

and the �*� (�indirection�) and �&� (�dereferencing�) operators:

Since nptr is a �pointer
to double�, the result
will be treated as
�double� data.

C programmers have a love/hate relationship with
pointers. Pointers turn out to be very powerful, but
it's very easy to screw things up when you use them.

We've seen the �&� operator before, when we use
numbers with scanf. As there, it just returns the
memory address of a variable.

The compiler interprets the indirection (or
�dereferencing�) operator (*) as follows:

�use the data in nptr to find the memory address it
�points to� and fetch the data from that address�

C supports the construction of recursive functions. Recursive functions
are defined in terms of themselves. Notice that the factorial function,
below (�fact�) actually uses itself:

Recursive Functions:

long fact(int n) {
if (n<=1)

 return (long)1;
else
 return (long)n * fact(n-1);

}

Terminating
condition

Recursive
function call

Recursive algorithms are typically very short and are used when simple
relationships may be defined between steps in a calculation or a data
manipulation strategy.

All recursive functions must have a terminating condition,
so the recursion has a limit.

N! = N*(N-1)!

Why �<=�? Because 0! is defined to be 1. Someday
we may want to use this function to give us the
factorial of zero.

We use �long� integers here because factorials can
get very large.

Without a terminating condition, the recursion would
continue to go deeper and deeper, infinitely, until all
available resources were exhausted and the
program crashed.

Try working through this function by hand, starting
with fact(3).

I hope you feel that you have an enormous repertoire
of computing skills now.

Thank you all for coming!

The End

Thanks!

