

 1

Physics 2660
Fundamentals of Computational

Physics

Instructor: Bryan Wright (bryan@virginia.edu)
TA: Sachith Dissanayake (sed5ta@virginia.edu)

Welcome to Physics 2660!

 2

Part 1: About this Course

Who is this class for?

Everybody is welcome, but this class is designed for
beginning programmers in the sciences.

It's required for physics and astronomy majors.

 3

Some of the Topics We'll Cover:
� Introduction to computer programming
� Using the Linux operating system,
� Using editors and compilers,
� C programming basics (and some C++),
� Programming style and techniques,
� Use and construction of code libraries,
� Debugging,
� Optimization

� Data analysis and simulation
� Numerical methods for differentiation, integration, iterative solutions,

root/maxima/minima finding,
� Visualization of data distributions,
� Fitting models to data,
� Simulation and Monte Carlo modeling of physical processes,
� Error analysis and hypothesis testing

Building a strong foundation for your future
computing projects!

In other words, we'll cover the basics of programming,
and then look at some specific uses for programming
in Physics (and other scientific/engineering fields).

 4

Tuesdays: Lecture in Physics 205, 2:00-3:15
Thursdays: Labs in Physics 22, 12:30-2:00, 2:15-3:45
 (register for one section)

Homework: Sent out after Labs.
 Typically due at 10 am the following Thursday.
 (electronic submission � don't be late).
 Paper copies due at lab meeting.

Class Times and Homework:

Your TA will be setting up some times each week,
outside of our regular lab times, when he'll open up
the lab room for your use, and be available to answer
questions there.

If you need to see me outside of class times, just send
me an e-mail and we can arrange an appointment.
You're also welcome to stop in and see me any time
in my office (Physics 315).

 5

Labs/quizzes: 20%
Homework: 30%
Midterm: 20%
Final Project: 30%
Occasional quizzes may be given before the class/labs.
These are mainly to check progress on material in class
and reading assignments.

Approximate Grading Breakdown:

In lieu of a final exam, we'll have a final project. This
will be a programming assignment that will be due at
the time we'd otherwise have a final exam. It will
essentially be a long homework assignment.

 6

Announcements
area

Class Web Page:
faculty.virginia.edu/comp-phys/phys2660

The web page includes:

� Class notes,
� Program examples and tips,
� Assignment solutions,
� Documentation,
� etc...

After each lecture I'll put up that week's lecture notes.
The format will be a PDF file with annotated slides.

I'll also leave the lecture notes from the previous
semester on the site, in case you find them useful.
These were created by Bob Hirosky, who taught this
course previously.

 7

� C Programming: The Essentials for Engineers and Scientists,
by David R. Brooks

 (Main text, covers introduction to C language, many
programming examples.)

� Statistics for Nuclear and Particle Physicists, by Louis Lyons

Online resources:
� C/C++ Programmer's Reference, by Herbert Schildt
 (Very useful programming language reference. You'll find a

link to it on the class web page.)

Textbooks:

There are other books you may find useful, but they're
not required. In particular, the reading assignments
for the Lyons book will also point you to equivalent
sections of another good book:

 �Data Reduction and Error Analysis for the Physical
Sciences�, by Philip R. Bevington.

You'll find many other books on the reserve shelves of
the Physics Library (3rd floor of the Physics Building).

 8

Assignment Schedule:
The schedule for a typical week will look like this:

Thursday 12:30-2:00 pm

or

2:15-3:45 pm

Lab Sessions

by 5:00 pm New Homework
Assignment Posted

Tuesday 2:00 pm Lecture

Thursday 10:00 am Homework Due

Repeat

Note that the homework assignements will be posted
on the web site on Thursdays, after the lab sessions.
 I'll send out an e-mail each Thursday letting you
know when they're there, and sometimes giving you
some extra tips about that week's assignment.

You'll be turning in the homework in two formats:
Electronically, through a submission system you'll try

out in the first pre-lab exercise, and in printed form,
with a signature indicating that the assignment is
pledged. Electronic submissions are due by 10am
on the following Thursday, and paper versions
should be brought to your lab section.

See the �Homework� section of the web page for more
information.

And don't forget the web site.

world we'll be working in.

 11

Why Linux?:

Linux

Linux-based computer systems are a mainstay in the world of scientific
computing. In any laboratory setting where the research requires large
amounts of data processing or computationally intensive calculations,
you will routinely find a Linux/Unix cluster of computers handling the
workload.
As of Nov 2010 92%
(96%, counting Unix) of
the world�s top performing
computer systems
operate on Linux. Linux
is the overwhelming
choice for building world-
wide high performance
computing Grids.

Source: top500.org

How did Linux become
so popular?

(Twice a year top500.org posts benchmark
measurements for the top 500 fastest computers on
earth.)

 12

�UNICS�
(1969)

Ken Thompson and Dennis Ritchie

DEC PDP-7

In the beginning....

�Space Travel�

In 1969, something called �UNICS� crawled out of the
primordial ooze. Ken Thompson and Dennis Ritchie of
AT&T Bell Labs were working on a GE mainframe under an
operating system called MULTICS.

Thompson had written a game called �space travel� that ran
very slowly on the GE machine. The lab had recently
acquired a DEC PDP-7 computer, and Thompson began
re-writing his game in assembly code for the PDP-7, where
he hoped it would run faster.

This effort eventually grew into an entire operating system
called UNICS, in contrast to MULTICS. AT&T originally
took no interest, but eventually saw the value of the new
operating system and began selling it under its new name
�UNIX�. It was pretty successful....
http://www.levenez.com/unix/

 13

"The Four Freedoms:"
0. The freedom to run a program for any purpose
1. The freedom to study and adapt a program
2. The freedom to redistribute
3. The freedom to improve and release improvements

Richard M. Stallman (RMS)

GNU Project: �GNU's Not Unix�
(1983)

Xerox 9700 Laser Printer

A few years later we meet a very bright student named Richard M. Stallman
(RMS). RMS graduated magna cum laude from Harvard and entered grad
school (in physics) at MIT. As an undergrad and a grad, he worked in MIT's
Artificial Intelligence Lab, and made significant contributions to the field of AI.

When he began his work, he was immersed in the hacker culture of the time,
which valued the free exchange of ideas. Things were beginning to change,
though. One example involved the first laser printer, made by Xerox. RMS
had been able to get source code from Xerox for their earlier printers, so he
could modify the printers' behavior. (Xerox was, after all, in the business of
selling printers, not software). But Xerox refused to give him the code for their
new laser printer, saying that it was proprietary.

As time went on, MIT spawned off many companies around proprietary
software, and even began selling Stallman's own code. All of this upset
RMS greatly. He believed that users and developers of software should have
what he called �four freedoms�, shown above. Toward that end, in 1983, he
began developing software for what he hoped would eventually be a
complete, free (in terms of the �four freedoms�) operating system, which he
called �GNU�, for �GNU's Not Unix� (the first of many recursive acronyms).

 14

Richard M. Stallman (RMS)

The GNU General Public License (GPL)

"...if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights."

(1985)

To foster the development of free software, RMS
founded the �Free Software Foundation� in 1985.
His plan was that the FSF would hold copyrights on
GNU software, and would license the use of the
software under the terms of the GNU �General Public
License�, which would ensure that the software
always remained free.

http://www.fsf.org/

http://gplv3.fsf.org/

 15

Gcc compiler

GNU Emacs

Libraries

Gdb Debugger

Bash Shell

sed, awk, grep

Kernel?

The Free Operating System Had a Missing Piece:
(but some highly successful components)

The kernel:

- Loads when computer starts
- Manages Memory
- Schedules CPU Time
- Handles I/O to Devices
..... and more.

GNU Hurd project began in 1984, but encountered delays....

By the late 80s, the GNU project had produced an
impressive suite of tools, many of which were widely
used (gcc and emacs, for example). These were
largely independent of each other, and could be used
on a wide range of common operating systems,
replacing or supplementing tools already found in
those operating systems. But a missing piece was
still necessary to make GNU a complete operating
system on it own. That piece was the kernel. In
1984 RMS had started the Hurd project, with the goal
of making a GNU kernel, but it wasn't getting
anywhere fast.

 16

Linus Torvalds

Freax Linux Kernel
(1991)

�Do you pine for the nice days of minix-1.1,
when men were men and wrote their own
device drivers? Are you without a nice project
and just dying to cut your teeth on a OS you
can try to modify for your needs? Are you
finding it frustrating when everything works on
minix? No more all-nighters to get a nifty
program working? Then this post might be just
for you :-)�

http://groups.google.com/group/comp.archives/browse_thread/thread/4af8c051cf34ff16?q=#13a145b453f89094

Then, in 1991, we meet another bright student. Linus
Torvalds was a Finnish engineering student. He'd been
inspired by an Operating Systems course he'd taken that
used Andrew Tanenbaum's �Minix�, a toy implementation of
Unix intended for teaching purposes.

Minix was simple enough to understand, and it ran on cheap,
readily available PCs, but it wasn't free. Linus decided to
try writing his own Unix-like kernel, to be released under
the GPL, and in 1991 posted the message above to the
comp.os.minix newsgroup, inviting other developers to
download his code and help him work on it.

He originally called the kernel �FREAX�, for �Free Unix�, but
the administrator of the download site named the directory
�linux�, for �Linus's Unix�, and the name stuck.

 17

Our working definition of �Linux� for this class:
A complete operating system based on the Linux kernel
and including the tools and utilities necessary for running
applications.

Strictly speaking �Linux� just refers to the kernel that
Linus Torvalds began developing. But when people
say �Linux� these days they often mean a complete
operating system that uses the Linux kernel. That's
the definition we'll use for this class.

 18

B CBCPL

Dennis RitchieDennis Ritchie

printf (�Hello world!�);

457f 464c 0101 0001
0000 0000 0002 0003
...

CompilerCompiler

Hello world!

While working on the �Unics� operating system, Ken
Thompson and Dennis Ritchie realized that they
needed a more convenient way of writing machine
code. They needed a compiler that could take high-
level, readable commands in a specialized computer
language and translate these into machine code.

At first, they used an existing language called BCPL
(�Basic Combined Programming Language�). Ken
Thompson developed his own version of this and
called it �B�. Dennis Ritchie improved on this, and
called his new language �C�.

C is simple in that there aren't many words in the C
language. The core functionality of C can be
extended by writing �functions� (written in C) that can
be stored in libraries and re-used. For example, the
C language doesn't have a square-root command,
but there's a library of math functions that contains a
square-root function.

To implement a C compiler on a new kind of computer,
a programmer just needs to write a compiler that can
understand the small, core part of C. Then he or she
can use this to compile all of the libraries containing
math functions and other things. This was one
reason for C's initial popularity.

 20

 C or C++?

Both! Most of the code we'll write in this
class will be C, but we�ll use the C++
compiler for everything, because it also
understands C. The advantages of this
are:

� This will help you learn to avoid
habits that break C++.

� C++ is pickier about sloppy coding
(even when writing C-style code).

� It lets us introduce some C++
programming without requiring you
to change the way you compile and
run your programs.

C
C++

C++ is a superset of C:

Adds:
� Objects
� Iostream
etc.

In this course we'll show you how to use an alternative
system for reading/writing data (called �iostream�)
that's offered in C++, and we'll take a brief look at
something called �classes�, which introduces a whole
new programming philosophy called �object oriented
programming�. We won't make much use of these
tools, but I want you to recognize them when you
encounter them later in your career.

 21

Part 3: Using Linux

This is a teletype terminal of the type I used back in the 1970s, when
all we had was the command line, and We Liked IT!

Linux is still maybe a little more weighted toward the command line
than Windows. Looking at the Linux World, you could say that
almost anything you can do at the command line can also be done
graphically. In the Windows world, I think it's fair to say that almost
anything you can do grapically can also be done from the
command line.

The two worlds are converging: Linux's graphical interfaces are
continually improving, and Windows keeps improving its
command-line interface.

We can all appreciate the value of a graphical interface. It's intuitive
(if it's well-designed) and its �discoverable�, in that you can browse
around a graphical program's menus and find out what the
program can do. But what's the value of a command-line
interface? If graphical interfaces are good, why do all major
operating systems continue to improve their command-line
interfaces?

 22

The Command Line:

Why should you do things from the command line?:

* In Linux, graphical tools provide a front-end to help you do tasks, but you
can do more from the command line.

* There are several sets of graphical tools available for Linux, so if you learn
one of them you may find that it's not available on the next computer you use.

* There's no guarantee that a given computer will have graphical tools
installed, or even a monitor.

* Text commands are easily reproduced. It's easy to document what you've
done, or to tell someone else how to do it, or to automate what you've done.

~/demo> ls
clus.pdf data-for-everybody.1.dat phase2
cluster.pdf ForYourEyesOnly.dat readme.txt
cpuinfo.dat phase1 ReadMe.txt

Prompt Command Results

Output of the �ls� command, which lists the files in the current directory.

The answer is that the command line has its own
advantage. Here are some of the things that might
make someone choose to use the command line
under Linux.

The last item is the most important, I think. This is true
for all operating systems, not just Linux, and it's why
all major operating systems still have a command-
line interface and continue to improve it.

There are graphical shells and command-line shells.
When you log in to Microsoft Windows, you're using
a graphical shell. In that case, you communicate
with the shell by pointing and clicking. Today we'll be
talking about command-line shells, where you
communicate by typing commands.

 24

A Few Useful Linux Commands:

ls List the contents of a directory.
pwd Show the name of the current directory.
cd Change the current directory.

cp Copy a file.
mv Move (rename, relocate or both) a file.
rm Delete (remove) a file.
mkdir Make a new directory.
rmdir Delete (remove) a directory.
man Show docs (manual pages) for a command.
ln Make a link to a file.
cat

touch

which Find a command in the search path.

less or
more

Show the contents of a file, one page at a
time.

Spit out the concatenated contents of one
or more files, without paging.
Change the timestamp on a file, or create
an empty file.

This is just a list to get you started.

As you can see, the commands are typically terse.

 25

~/demo> ls -l
total 60
lrwxrwxrwx 1 bkw1a bkw1a 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rw-r----- 1 bkw1a bkw1a 20601 Jan 18 10:51 cluster.pdf
-rw-r----- 1 bkw1a demo 983 Jan 18 10:53 cpuinfo.dat
-rw-r--r-- 1 bkw1a bkw1a 29 Jan 18 10:59 data-for-everybody.1.dat
-rw------- 1 bkw1a bkw1a 41 Jan 18 10:56 ForYourEyesOnly.dat
drwxr-x--- 3 bkw1a bkw1a 4096 Jan 18 11:35 phase1
drwxr-x--- 2 bkw1a bkw1a 4096 Jan 18 10:55 phase2
-rw-r----- 1 bkw1a demo 72 Jan 18 10:52 readme.txt
-rw-r----- 1 bkw1a bkw1a 9552 Jan 18 10:52 ReadMe.txt

Command Syntax:

Linux commands are often modified by the addition of switches or qualifiers like the �-l�, for
�long�, switch used in the ls command above. These modifiers will often take one of these
forms:

* A dash followed by a letter or number, optionally followed by an argument
* Two dashes followed by a word, optionally followed by an argument.

For ls, some useful switches are:

-l Gives more information about the files.
-T Combined with -l, sorts the files in reverse time order.
-S Combined with -l, sorts the files in order of descending size.
-a Lists all files, including hidden files.

Multiple single-letter switches can often be combined, like �ls -lT� instead of �ls -l -T�

In this case, we can change the behavior of the �ls�
command by adding the �-l� switch.

Note, though, that Linux commands were all developed
independently, and they have a long history. Syntax
conventions have evolved over time, and different
developers have used different conventions.

We'll see examples of some odd command syntax with
commands like �tar� and �ps�.

 26

Case Sensitivity:

Important Note: when typing commands, file names,
etc...

Linux and C/C++ are

CaSe SeNsItIvE
So, for example:

This is not the same as this,
VELOCITY is not the same as Velocity or velocity,

MyFile.dat is not the same as MyFile.DAT

For best results, stick to all lower-case unless there's a
good reason to do otherwise.

 27

Part 4: Remote Shells

So, how do we give commands to a remote computer?
Computer networks have been around for a long
time now. One of the first uses of these networks
was the execution of commands on remote
machines.

 28

The �Galileo� Cluster:
In this class, we'll do our programming on a Linux cluster called �Galileo�.
Galileo doesn't have any keyboards or monitors connected to it. So how
do we use it?

Galileo Web
Page

Again, I'll approach the answer asymptotically, starting
with a little history...

 29

Telnet
Server

Remote Computer
(Switzerland)

Your Computer
(Virginia)The Old, Bad Way (telnet):

~/demo> telnet srvr.cern.ch
Connected to 192.168.5.7.
Escape character is '^]'.

Login: elvis
Password: *********

Welcome to the Server!

elvis$

Telnet (�Telecommunications
Network�) was developed in 1969,
and is one of the oldest internet
protocols. A telnet client running on
the local computer connects to a
telnet server on a remote computer.
The telnet server accepts the user's
name and password, and starts a
command-line session on the
remote computer.

Telnet communications are not
encrypted. Everything the local user
types is passed as-is across the
network connection to the remote
computer.

TCP port 23

Note that nothing telnet transmits is encrypted,
including your username and password when you
log in.

Telnet was written at a time when computers were
behemoths, and few people had access to them (or
the networks that connected them). Just getting
access to a remote computer was a Big Deal.
Security was of little or no concern.

Although some network-connected printers and home
network routers still accept telnet connections for the
purpose of configuring them, there's little need for
telnet any more, and it should be avoided whenever
possible.

 30

The New Way (ssh):
In 1995, Finnish researcher Tatu Ylönen wrote �ssh� (�Secure Shell)
as a more secure replacement for telnet. This soon evolved into a
proprietary commercial product.

In 1999, Björn Grönvall began with earlier, free versions of Ylönen's
code and began writing what was to become OpenSSH, a completely
open-source re-implemention of ssh. This is now the de facto
standard ssh implementation, and is included in many operating
systems.

OpenSSH uses a blowfish as its logo
because �blowfish� is the name of the
strong, public-domain encryption algorithm
it uses (by default) to encrypt network
traffic. See:
http://en.wikipedia.org/wiki/Blowfish_(cipher)

MS Windows doesn't have ssh software, but you can install it for free:
� Putty Is a free ssh client for Windows. It's easy to download and install.
� SecureCRT Is a commercial product, but UVa has a site license.

From 1969 to the 1990s, telnet was the standard way
of getting a command-line connection to a remote
computer. It still had little security, but the world had
changed. Now many people had access to
computers and the network. Following a breakin at
his University, Tatu Ylönen finally got fed up with the
lack of security in telnet, and wrote �ssh� as a
replacement.

In this class, we'll use ssh to talk to Galileo. It's
already installed on the computers in the lab, and in
ITC's public computer labs, and you can install it on
your own computer if you like, using the links at the
bottom of the slide above.

 31

Part 5: Using the Computer Lab

Our computer lab is in room 22, in the basement of the
Physics Building. It's just inside the back door
closest to the Ed school. (It doesn't really look like
the picture above.)

The computer lab we'll be using (room 22) contains
several desktop computers running a Linux
distribution called KNOPPIX.

How can we use the keyboards, monitors and mice
(mouses?) on these lab computers to communicate
with Galileo?

 33

Desktop View of a Lab ComputerDesktop View of a Lab Computer
Click here to open a terminal window.Click here to open a terminal window.

The KNOPPIX desktop will probably look similar to the
desktop of other computers you've used. At the
bottom left, there's a button that will pop up a menu
of programs, and along the bottom of the screen
there are a few icons for commonly-used programs,
like the terminal emulator we'll be using.

This shows what it looks like when you use SSH to
connect to Galileo from one of the lab computers.
The first time you do it, SSH will ask you to confirm
that this is really the computer you want to talk to. It
displays a �fingerprint� that you could verify really
belongs to Galileo. (Trust me, it really does.) You'll
need to accept this by typing �yes�, and then you'll be
asked for your password.

There are many text editors on Galileo, but I
recommend you start out with a simple editor called
�nano�. To use nano to edit a file, just type �nano�
followed by the file name. Once in nano, you can
type normally, or you can use special control
keystrokes to do things like saving your file or
searching. These are listed at the bottom of the
window.

 36

[bkw1a@node1 ~] g++ -o hello hello.cpp

[bkw1a@node1 ~] hello
Hello world!

Compiling and Running a Program:

The g++ command invokes the GNU C++ compiler
and tells it to translate our file hello.cpp into machine
code, which it will write into a new file called just
�hello�.

Now that the output file has been created, we've
created a new command that we can use! Typing
�hello� (the name of the output file) runs our program.

As we'll see later, you'll usually develop your program
by repeatedly editing, then compiling, then running it.

 37

Part 6: Remote Graphics

OK, so ssh is great for typing commands and seeing
text, but what about drawing graphics?

In the Linux world, graphics is done through a system
called, simply, �X�.

X programs are called �clients�. They send their
graphical output to an �X server� program running on
your local computer. The X server sends keystrokes
and mouse clicks back to the client.

X clients can also be run on the same computer as the
X server. This is how locally-running applications
display graphical data on a Linux computer. As far
as the user is concerned, things look just the same
no matter whether the client program is running
locally or on a remote computer.

 39

Using SSH to Make X Secure:

X ServerX Client
(e.g.,gnuplot)

X Protocol
(unencrypted)

Remote Computer

ssh

Remote Computer

sshd X ServerX Client
(e.g.,gnuplot)

Ssh Protocol

(encrypted)

Tunnelled X Protocol

The old, bad way...

The new, good way...

In the bad old days we used to use X in the way shown
in the top picture. We'd allow a specific remote
computer access to our X server, and then on the
remote computer we'd point the remote X
applications to our local computer's X display.

This is insecure for a couple of reasons: (1) the X
protocol connection between the computers is
unencrypted, and (2) any program running on the
remote computer (which may not be completely
trustworthy) is allowed to read our local keystrokes.

The better way to do it is shown in the bottom
illustration. Just let ssh set up an encrypted,
tunnelled X connection between the machines. This
is easy to do, and it Just Works.

 40

Working Outside the Lab:

sshsshd X Server
Ssh Protocol

(encrypted)
nxclientNX

Server
X Client

X Client

X Client Tunnelled NX Protocol

Virtual Frame Buffer

Your ComputerRemote Server

The X protocol can be slow, especially over a slow network link. There
are ways to greatly compress the X protocol, though. One of these is a
free commercial product called NXClient. NXClient automatically sets up
a secure connection to a remote computer and sends highly compressed
X traffic through it. You can even use it over a dialup line!

If you want to work from your own computer, I'll provide you with an
NXClient configuration file that you can click on to connect to Galileo,
after you've installed NXClient on your computer.

You can download NXClient from here:
 http://www.nomachine.com/download.php

After installing it, you'll also need to download the configuation file here:
http://galileo.phys.virginia.edu/Galileo-xterm.nxs

(Note that you don't need to install a separate X server on your MS Windows
computer in order to use NXClient. Everything you need � except the
configuration file � is included in NXClient itself.)

The NXClient program is available for Windows, Linux and OS X. It talks to a
remote �NX server� that maintains a local virtual display in memory, called a
�Virtual Frame Buffer� (VFB). The NX server starts up applications which send
their display information to the VFB. The VFB can then be displayed locally by
the nxclient application. All traffic between server and client is tunnelled
through an encrypted SSH connection.

NX has the added benefit that its NX protocol is a highly compressed version of
the X protocol, and will give fast performance even over a slow network
connection.

 41

The End

Thanks! We'll pick up here next week.

