

 1

Physics 2660
Lecture 1: Introduction

Today:
� Inside the computer
� The shell
� First steps towards programmming

Welcome again to Physics 2660!

Remember that you can find much information about the class at
the web page:

http://faculty.virginia.edu/comp-phys/phys2660

There you'll find:
� The list of textbooks
� Homework, pre-lab and lab assignments
� Reading assignments
� Grading policies
� Lots of programming documentation.

If you've recently joined the class, please let me know and I'll e-
mail you some introductory material and get you an account on
our computing cluster, Galileo. You'll need this to do the pre-lab
assignment that's due before Thursday's lab.

 2

Part 1: Where We're Going

Our goal in this class is to jump-start you from your
current level of computing skill to a level where
you're able to do some fairly sophisticated
computational physics. By the time this semester is
over you'll be able to create powerful programs that:

� Chew up data and produce useful results,
� Accurately model complex physical systems,
� Visualize data sets clearly and easily,
and lots of other things.

This is more than just a general programming course.
We want to teach you the skills you need to do real
science.

 3

A Reminder About Our Goals:

� Introduction to programming in C/C++
� Introduction to Linux
� Converting problems to code
� Good programming style, best practices
� Optimization and Debugging
� Basic data handling, with some
� Statistical Analysis,
� Fitting,
� Visualization tools

 4

Some Examples:
Temperature distribution in
a solid, after heat flow: Parameter Extraction/Fitting models to data,

significance of results:

Monte Carlo Simulation of particle shielding:
Distribution of stopping depths in material
based on random scattering and energy
loss in collisions in shield wall.

Here are some of the types of problems you'll learn to
solve during this course.

 6

Part 2: Computer Hardware
IBM PC 5150

(1981)
* Price competitive with
Apple's home computers

* Largely non-proprietary
architecture could be
cloned or re-engineered
easily

* Ecosystem of clones
created market for
software vendors

In order to understand computer programming well, you need to first
understand a little about computer hardware.

Before 1981 people had �home computers�, but there was no such thing
as a �PC�. Then, in 1981, IBM decided that there was money to be
made in the burgeoning home computer market. They released their
first home computer, called the IBM Personal Computer 5150.

Its price was competitive with the popular Apple home computers, and it
was based largely on non-proprietary technology, which made it possible
for other companies to clone the PC and sell PC-compatible computers.
This created an enormous new market of compatible computers for
hardware and software vendors.

Competition drove prices down, and consumers valued the variety of
products available for the PC, and valued the IBM name. PCs came to
dominate the low-priced computer market.

Today, almost any computer you encounter, from powerful servers to low-
end netbooks, will have a similar architecture, inherited from the original
IBM PC.

Today's PCs are still architecturally very similar to the
original IBM PC. Some components to pay particular
attention to are the CPU, which does the computer's
thinking, and the Northbridge and Southbridge, which
handle fast and slow I/O, respectively. Northbridge
and Southbridge are often referred to collectively as
the �chipset�. I've shown relative speeds for some of
the connections for comparison. Note that disk
access is much slower than memory access. We'll
come back to this later.

Non-programmers often confuse the terms �disk space�, �memory� (or
�RAM�) and �cache�. I like to use a cooking analogy to explain the
differences, and describe how computers compensate for the relatively
low speed at which data can be read off of a disk.

Since disk access is slow, computers try to predict which disk data you'll
need next. Then, while the computer is digesting a bit of data you've
just read from the disk, in the background it reads the data it thinks you
might need next, and stores it in memory. The next time you request
data from the disk, the computer first checks to see if the data is
already stored in memory, and fetches it from there (much faster) if it
is.

There's even a third level of storage, called �cache memory�, that's
actually inside the CPU package itself, and can be accessed faster
than RAM. Just like reading from the disk, the computer tries to predict
which data from RAM you'll need next, and store it in the cache.

Disk: large, slow, non-volatile
RAM: smaller, faster, volatile
Cache: tiny, really fast, volatile
TIP: minimize your i/o to maximize your performance

 9

How a Program Runs:

base Instruction 0

base+1 Instruction 1

base+2 Instruction 2

base+3 Instruction 3

base+4 Instruction 4

base+5 Instruction 5

Memory Locations
�Program Counter�

We usually write programs in human-readable languages like C, but
CPUs don't understand C. The programs we write must be translated
into a series of low-level instructions that the CPU can understand.
This translation is done by a program called a compiler.

When running a program, the CPU fetches instructions from the
computer's memory. A storage location inside the CPU (a �register�)
points to the memory location for the next CPU instruction. This register
is called the �program counter� (PC). After fetching each instruction, the
CPU increments the PC and executes the instruction

Of course, different CPUs use different
instruction sets.

 10

Central Processing Units (CPUs):
Most modern computers use
processors that are descendants
of the Intel processor used in the
original IBM PC in 1981, but
there are others:

CPU in a PGA (Pin Grid Array) package

Alpha DEC DEC servers
and workstations

ARM Acorn Mobile devices

m68k Motorola Early Macintosh,
Amiga, Atari,
Sega

MIPS MIPS SGI
Workstations,
Sony
Playstation2

PowerPC Apple/IBM/
Motorola

Apple Macintosh

s390 IBM IBM mainframes

Sparc Sun Sun
workstations and
servers

IA-64 Intel ...not much.

CPU Company Used in...

It's important to note that, in general, different
processors will have different �instruction sets�. A
program compiled for one type of CPU may not be
able to run on a computer with a CPU of a different
type.

The solution is often to re-compile the program, using
a compiler capable of producing the right instructions
for the new CPU.

This is one of the many advantages of writing code in a
high-level language, rather than trying to write
machine code directly. High-level languages let you
specify what you want to do, without worrying about
the details of the underlying CPU.

 11

Part 3: Using Linux

Okay, so now we know everything about computer
hardware. Now let's talk a little bit about the
Operating System: the framework of software within
which we'll be writing programs.

 12

Command-line Shells:
Command-line shells accept typed commands, parse them and execute
them. They also:

� Expand wild-card expressions.

� Usually store a history of previously-typed commands, and provide a way
of recalling these.

� Provide a set of built-in functions that supplement (or sometimes replace)
the commands provided by the operating system.

� Provide the user with the ability to define abbreviations for commands
(aliases).

� Maintain a set of user-defined variables that can be used in command
lines (environment variables and shell variables).

And many other things.

Why should you do things from the command line?:

* In Linux, graphical tools provide a front-end to help you do
tasks, but you can do more from the command line.

* There are several sets of graphical tools available for Linux,
so if you learn one of them you may find that it's not available
on the next computer you use.

* There's no guarantee that a given computer will have
graphical tools installed, or even a monitor.

* Text commands are easily reproduced. It's easy to
document what you've done, or to tell someone else how to
do it, or to automate what you've done.

 13

A Few Useful Linux Commands:

ls List the contents of a directory.
pwd Show the name of the current directory.
cd Change the current directory.

cp Copy a file.
mv Move (rename, relocate or both) a file.
rm Delete (remove) a file.
mkdir Make a new directory.
rmdir Delete (remove) a directory.
man Show docs (manual pages) for a command.
ln Make a link to a file.
cat

touch

which Find a command in the search path.

less or
more

Show the contents of a file, one page at a
time.

Spit out the concatenated contents of one
or more files, without paging.
Change the timestamp on a file, or create
an empty file.

This is just a list to get you started.

As you can see, the commands are typically terse.

In prelab 1 you�ll have some practice using Linux shell
commands before our first lab.

 14

~/demo> ls -l
total 60
lrwxrwxrwx 1 bkw1a bkw1a 11 Jan 18 11:39 clus.pdf -> cluster.pdf
-rw-r----- 1 bkw1a bkw1a 20601 Jan 18 10:51 cluster.pdf
-rw-r----- 1 bkw1a demo 983 Jan 18 10:53 cpuinfo.dat
-rw-r--r-- 1 bkw1a bkw1a 29 Jan 18 10:59 data-for-everybody.1.dat
-rw------- 1 bkw1a bkw1a 41 Jan 18 10:56 ForYourEyesOnly.dat
drwxr-x--- 3 bkw1a bkw1a 4096 Jan 18 11:35 phase1
drwxr-x--- 2 bkw1a bkw1a 4096 Jan 18 10:55 phase2
-rw-r----- 1 bkw1a demo 72 Jan 18 10:52 readme.txt
-rw-r----- 1 bkw1a bkw1a 9552 Jan 18 10:52 ReadMe.txt

Command Syntax:

Linux commands are often modified by the addition of switches or qualifiers like the �-l�, for
�long�, switch used in the ls command above. These modifiers will often take one of these
forms:

* A dash followed by a letter or number, optionally followed by an argument
* Two dashes followed by a word, optionally followed by an argument.

For ls, some useful switches are:

-l Gives more information about the files.
-T Combined with -l, sorts the files in reverse time order.
-S Combined with -l, sorts the files in order of descending size.
-a Lists all files, including hidden files.

Multiple single-letter switches can often be combined, like �ls -lT� instead of �ls -l -T�

In this case, we can change the behavior of the �ls�
command by adding the �-l� switch.

Note, though, that Linux commands were all developed
independently, and they have a long history. Syntax
conventions have evolved over time, and different
developers have used different conventions.

We'll see examples of some odd command syntax with
commands like �tar� and �ps�.

 15

The Linux Filesystem:

et cetera...

Here's a graphical representation of a
highly simplified Linux directory tree.
One of the basic principles of Linux
(and other varieties of Unix) is that
there's only one directory tree.
Everything lives somewhere under the
�/� (root) directory.

This is unlike Windows, for example,
where each device has a separate
directory tree. In Windows we have a
directory tree on drive C:, a different
one on drive D:, and so on. Under
Linux all files on all devices show up
somewhere in the same directory tree,
with �/� at its top.

This file is �/home/bryan/file.txt�

Note that, whereas Windows uses �\� as the directory
separator, Linux uses �/�.

 16

The �Current Directory�:

~/demo> pwd
/home/bryan/demo

You can see what directory you're currently working in by using the �pwd� command:

~/demo> cd phase1

You can change your current directory by using the �cd� command, like:

~/demo> cd /home/bryan/demo/phase1

Or, equivalently:

In the first case, we specify the name of a directory relative to the current
directory, and in the second case we explicitly give the full path name (the
complete name of the directory we're interested in.)

Note that the path to a file or directory is given as a list of parent directories,
separated by slashes, starting with the root directory (�/�). In this case, the current
working directory is �/home/bryan/demo�.

 17

The �Home Directory�:

~/demo> echo $HOME
/home/bryan

Each user has a �home directory�. This directory will be your current
directory right after you log in.

You can use the $HOME environment variable in commands, to refer to
your home directory.

~/demo> ls $HOME/demo

You can also refer to your home directory as �~�, in most shells.

~/demo> ls ~/demo

$HOME is a shell variable, or �environment variable�.
These are similar to the variables we'll use in C
programs. In fact, you can write programs in the
shell language, too. These are usually called
�scripts� or �shell scripts�. They can be used to
automate shell tasks you do often.

 18

The PATH Environment Variable:

~/demo> echo $PATH
.:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
The PATH variable defines a search path for the shell to use when
looking for a program. It's composed of a list of directory names,
separated by colons. When looking for a program, the shell starts
at the left of the list and looks in each directory until it finds a
program with the matching name (or fails).
~/demo> which ls
/bin/ls

The �which� command looks through the search path, just as the
shell would, and tells you where the shell would find a given
program. When you type �ls� at the command line, the shell finds
the program /bin/ls and runs it. You (or a system administrator) can
add new commands just by putting appropriately-named programs
into directories along your search path.

Most of the commands you type will really just be the names of
programs. When you type the command, the shell looks around for
an executable file with the same name, and then runs it.

Note that:

1. �.�, the current directory, is included. This is not
generally the case for users with administrative
privileges, for security reasons.

2. By putting an alternative program with the same
name in /usr/local/bin, a local administrator can
provide a modified version of a program that
overrides any version that might already exist in /bin
or /usr/bin.

 19

~/demo> history
 349 16:14 wget http://download.adobe.com/pub/adobe/magic/svgviewer....
 350 16:15 tar tzvf adobesvg-3.01x88-linux-i386.tar.gz
 351 16:15 tar xzvf adobesvg-3.01x88-linux-i386.tar.gz
 352 16:15 cd adobesvg-3.01
 353 16:15 dir
 354 16:15 cd ..
 355 16:15 rm adobesvg-3.01*
 356 16:15 rm -rf adobesvg-3.01*
 357 16:19 git clone git://people.freedesktop.org/~cworth/svg2pdf
 358 16:19 cd svg2pdf
 359 16:19 dif
 360 16:19 dir
 361 16:19 git pull
 362 16:19 make
 363 16:19 dir
 364 16:20 ./svg2pdf ../drawing.svg
 365 16:20 ./svg2pdf ../drawing.svg junk.pdf
 366 16:20 acroread junk.pdf

Command-Line History:

The �history� command shows you commands you've recently entered.

You can use the up and down arrow keys to recall previously-typed
commands and re-use them. If you know the beginning of a previously-
entered command, you can re-run it by entering a �!� followed by the
beginning of the command.

 20

Jargon Overload?

Don�t worry, you�ll pick up what you need to
know naturally as you start working in the
labs and on the homework problems.

And there's a lot of documentation available....

 21

Documentation: Command-line help:

~/demo> ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.
 -a, --all do not ignore entries starting with .
 -A, --almost-all do not list implied . and ..
 --author with -l, print the author of each file
 -b, --escape print octal escapes for nongraphic characters
 --block-size=SIZE use SIZE-byte blocks
 -B, --ignore-backups do not list implied entries ending with ~
 -c with -lt: sort by, and show, ctime (time of last
 modification of file status information)
 with -l: show ctime and sort by name
 otherwise: sort by ctime
 -C list entries by columns
 --color[=WHEN] control whether color is used to distinguish file
 types. WHEN may be `never', `always', or `auto'
 -d, --directory list directory entries instead of contents,
 and do not dereference symbolic links
 -D, --dired generate output designed for Emacs' dired mode
 -f do not sort, enable -aU, disable -lst
 -F, --classify append indicator (one of */=>@|) to entries
.....

Many commands will tell you about themselves if you give them a �-h� or
�--help� switch on the command line. For example:

Note that this is just a convention, and not all
commands will honor it. As we noted before, these
commands have a long history, and were written by
many authors.

 22

Documentation: Man Pages:

~/demo> man ls
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

DESCRIPTION
 List information about the FILEs (the current directory by default).
 Sort entries alphabetically if none of -cftuvSUX nor --sort.

 Mandatory arguments to long options are mandatory for short options
 too.

 -a, --all
 do not ignore entries starting with .

 -A, --almost-all
 do not list implied . and ..

q=quit,b=back,space=forward,h=help

�Man Pages� (online documents in a standard format) are available for
most common commands. The �man� command will show these to you,
one page at a time. To exit from man, type �q� (for �quit�). To go to the
next page, press the spacebar. To go back up, press �b�.

For information about using the man command, don't
hesitate type type �man man�.

Man pages are the most common type of online
documentation for Unix-like operating systems.

 23

Documentation: Info Pages:

~/demo> info ls
File: coreutils.info, Node: ls invocation, Next: dir invocation, Up: Directo\
ry listing

10.1 `ls': List directory contents
==================================

The `ls' program lists information about files (of any type, including
directories). Options and file arguments can be intermixed
arbitrarily, as usual.

 For non-option command-line arguments that are directories, by
default `ls' lists the contents of directories, not recursively, and
omitting files with names beginning with `.'. For other non-option
arguments, by default `ls' lists just the file name. If no non-option
argument is specified, `ls' operates on the current directory, acting
as if it had been invoked with a single argument of `.'.

 By default, the output is sorted alphabetically, according to the
locale settings in effect.(1) If standard output is a terminal, the
output is in columns (sorted vertically) and control characters are
output as question marks; otherwise, the output is listed one per line
and control characters are output as-is.
--zz-Info: (coreutils.info.gz)ls invocation, 54 lines --Top---------------------
Welcome to Info version 4.8. Type ? for help, m for menu item.

�GNU Info Pages� are another standard format for online documentation. Fewer
commands have info pages, but when present this documentation may be more
extensive than the command's man page. Info pages are arranged in a tree, with
links between documents, much like a primitive version of the World Wide Web.

Some commands have only info pages. These
commands will typically have a minimal man page
that only refers you to the info page.

For information about navigating around inside info, try
typing �info info� at the command line.

Lord Byron. She was a talented mathematician, and
is considered to be the first computer programmer. In
the publication above, she described an algorithm (or
�recipe�) for use with Charles Babbage's �Analytical
Engine� to calculate Bernoulli numbers. The
programming language �ada� is named after her.

A recipe doesn't specify the type of measuring cup you
should use, and it doesn't tell you what brand of flour
to use (well, it may, but you know you can ignore
that). It gives you a general set of instructions for
getting something done. A programming algorithm is
the same: it doesn't tell you what language to use, or
what to name your variables, but tells you a useful
technique for doing something.

 26

Timeline of Programming Languages:

1957 FORTRAN
1959 LISP
1960 COBOL
1964 BASIC
1970 Forth
1972 C
1983 C++
1987 Perl
1991 Python
1995 Java Dennis Ritchie

Hundreds of programming languages have been developed since the first
digital computers appeared in the 1940s. Many of them are still in use
today. The list below shows the years in which several widely-used
languages were invented.
The C language, in which we'll do most of our work, was developed by
Dennis Ritchie in 1972. (The C++ language appeared a little over a
decade later.)

In developing C, Ritchie
did two things:

� Defined the C language,
by describing its
vocabulary and syntax,

� Wrote a compiler that
could translate that
language into machine
code for a particular CPU.

One of the attractive qualities of C was its simplicity.
This made it easy to write a C compiler for each new
type of CPU that came along. During the early years
of computing, this was even more important than it is
now, since back then each manufacturer had a
different CPU with a different instruction set.

Many other people wrote C compilers that could
understand Ritchie's C language.

The original purpose of C was the development of the
Unix operating system. The name �C� was chosen
as a successor to an earlier language called �B�,
which was the successor to the even earlier �BCPL�
(�Basic Combined Programming Language�).

 27

A Simple C Program:
#include <stdio.h>

#include <math.h>

int main () {

 int a = 2;

 int b = 2;

 int c;

 double d;

 printf ("Hello, world!\n");

 c = a*b;

 printf ("The value of c is %d\n", c);

 d = sqrt(a);

 printf("The square root of %d is %f\n",a,d);

 return(0);

}

� Commonly-used statements can
be stored in external �header� files
and re-used in other programs.
� Each part of your program is a
function. At the highest level is a
special function named �main�.
� Every statement must end with a
semicolon.

 28

GNU C/C++

~demo> g++ -o myprogram myprogram.cpp

g++ is just a program, and you invoke it from the command line like
this:

This would cause g++ to read the file �myprogram.cpp� and produce
the output file �myprogram�, which is an executable binary file. You
could then run your program by typing �myprogram� at the command
line.

g++ (C++)
gcc (C)
gfortran

gcj (Java)
others...

IA-32
Alpha
ARM
m68k
others...

Frontends Backends
GNU
Compiler
Collection

In this class, we'll be using g++, a compiler originally written by Richard
Stallman as part of his GNU Compiler Collection project:

The GNU Compiler Collection contains a core that
provides the common functionality needed by most
compilers, and modular �frontends� and �backends�
that allow the collection to understand several
different languages and generate machine code for
many different types of CPU.

Although specialized compilers may be able to
generate faster or smaller code, the flexibility of the
GNU Compiler Collection has made it very popular
and it is widely used.

Note that, by default, g++ does more than just compile.
 It also runs a preprocessor before compiling and a
linker afterward. We'll talk more about these steps
soon.

 30

auto break case char const continue default
do double else enum extern float for
goto if int long register return short
signed sizeof static struct switch typedef union
unsigned void volatile while

The C Vocabulary:
C is a simple language in at least one respect: it has a small vocabulary.
Shown below is a list of all of the words in the C language. There are
only 32 of them!

You should note two things about these words:

� Remember that C is case-sensitive, so it won't recognize the words
�IF� or �If� for example.

� None of these words is allowed to be used as the name of a variable.
Because of C's syntax, it can't tell the difference between a variable
name and an instruction. Be sure to avoid these words when naming
your variables.

 31

asm dynamic_cast namespace reinterpret_cast try bool
explicit new static_cast typeid catch false
operator template typename class friend private
this using const_cast inline public throw
virtual delete mutable protected true wchar_t
ALSO
and bitand compl not_eq or_eq xor_eq
and_eq bitor not or xor

The C++ Vocabulary:
The C++ language starts with the vocabulary of C, but it adds many new
words:

As with C, you need to avoid using these words as variable names when
programming in C++.

Now let's look at the structure of a typical C program.

 33

The Structure of a C Program:

int main() {

return(0);

}

The body of the
program goes here.

A C or C++ program is built up out of units called �functions�. Each
program must have at least one function, called �main�. The large-scale
structure of a C program consists of a statement like the one below,
defining what this �main� function should do.

In the example below, the �main� function doesn't have any arguments,
but we'll see later that it can do so.

The body of the function
is delimited by braces.

The function returns a
value. In the case of
�main�, the operating
system uses this value
to determine whether
the program completed
successfully. By
convention, non-zero
means an error
occurred.

C uses several types of parenthesis-like delimiters.
Here's a list, along with the names people commonly
use to refer to them:

() Parentheses
[] Square brackets
{ } Curly brackets or braces
< > Angle brackets

 34

Variables, Assignment and Types:

int a;

int b = 25;

float c;

float d;

double e;

a = 50;

c = 3.14;

d = c;

int An integer
float A real (floating-point)

number
double A �double precision�

floating-point number

C and C++ are strongly typed languages. This means that every
variable you use must be defined to hold a specific type of data.
Some frequently used numeric types are shown below.

These lines
define the
types of
these
variables.

These lines
assign
values to
some
variables.

� Variables can optionally be
assigned a value when they're
defined.

� Assigning the value of �c� to the
variable �d�.

 35

Arithmetic Operators:

+ a+b Addition
- a-b Subtraction
* a*b Multiplication
/ a/b Division

% a%b Remainder (modulo)

C and C++ include the following arithmetic operators:

That's all! Other mathematical operations (like square roots and
trigonometric functions) are available as functions that live in the
standard math library, libm. We'll use these extensively, soon.

a = 50;

b = 2*a - 10;

c = 3*b/(a-1);

Note that parentheses can be used in
the expected way.

This illustrates one of C's design philosophies. The
language provides a minimal core functionality that
can be extended by writing functions. Some of these
functions (like printf and sqrt) are so widely useful
that they've been included in the standard libraries,
libc and libm, that are usually distributed along with
the C compiler.

 36

Adding Comments to Your Code:

/* Traditional C defines comments by using

opening and closing comment markers as shown

in this example. These comments may span

multiple lines.*/

// However, it is often better to write

// multiple line comments in this way

// to make the extended comments more

// clear in the text of your code

 int a =15; // C99 and C++ allow single line comments w/ the double slash

 int b = 6; /* this type of comment is allowed, but not preferred */

C++ allows you to add comments to your code in two different ways.
Comments are very important. They help you:

� Keep track of what you're doing while you write, and they
� Remind you of what you did when you or someone else looks at your
code later.

Comments are also useful for debugging your
program, which we'll discuss later. If you suspect
that a section of your program is causing a problem,
you can just �comment it out� (insert // in front of
each of the possibly-offending lines) and see if it
makes any difference. This is easier than actually
removing the lines and putting them back.

 37

#include <stdio.h>

#include <math.h>

#define PI 3.14

Preprocessor directives:

#include <stdio.h> directs the preprocessor to include the file called
stdio.h into the text of your program. This is a header file. These are
used to define the meaning of statements you use that are not
intrinsically part of the C/C++ language, standard functions from the C
library, functions from your own code base, etc...

By default, most modern C �compilers� actually do more than just
translate source code into machine code. For example, before compiling
your code, they typically run a preprocessor program. The preprocessor
program scans the code, looking for special instructions.

Preprocessor directives begin with a pound sign (#). These statements
are not part of the C/C++ language, per se. They form a small
separate language of their own. We'll introduce the parts of it you need
as we go along.

Some preprocessor
directives.

 38

#include <stdio.h>

int main() {

 printf(“Hello World\n”);

 return (0);

}

Using Functions:

The header file we
included, stdio.h,
defines the calling
syntax of printf. The
compiler checks that
the function is used
properly and stops
with an error
message if there is a
usage mistake.

�\n� is the special character
�newline� (also known as �linefeed�).

The core functionality of the C language can be extended by adding
functions. Many of these are available in the Standard C Library, or other
libraries. You'll also be writing your own functions.

Here's how you could use the function �printf� (which prints out text) in a
program:

(Note that the code above is a complete C program.)

Note: not defining printf through the header file
will also cause the compiler to stop with an
error message.

 39

#include <stdio.h>

int main() {

 int a =15; // integer variable

 int b = 6;

 printf(“Results:\n”);

 printf(“a/b is: %d\n”, a/b);

 printf(“a%%b is: %d\n”, a%b);

 printf(“a, b = %d, %d\n”, a, b);

 return(0);

}

More About printf:

Results:

a/b is: 2

a%b is: 3

a, b = 15,6

The program would print:

printf(format, arg1, arg2, ...);

The printf function takes one or more arguments. The first argument is
called the �format�, and it's just a text string that specifies a sort of template
for the things that printf will print out.

The format string contains plain text and any number of format specifiers
(like �%d� below). Each of the format specifiers will be replaced by one of
printf's extra arguments, then the result will be printed out.

�%d� means that the argument should be treated as a
�decimal number� (meaning an integer, in C).

Note that you can print a literal �%� by writing �%%�.

Format specifiers aren't required with the �cout� syntax
available in C++.

We'll see more format specifiers later.

 40

#include <stdio.h>

int main() {

 int a =15; // integer variable

 int b = 6;

 printf(“a/b is: %d\n”, a/b);

 printf(“a%%b is: %d\n”, a%b);

 return(0);

}

Integer Arithmetic:

a/b is: 2

a%b is: 3

The program would print:

Note that operations on
integers produce integer
results. Here, the result
is truncated to make it an
integer.

Pay attention to the types of your
variables. For example, when you try to
store a floating-point value in an integer
variable, C will round the value down to
the next integer. This may not be what
you want.

 41

Part 6: Constructing Your First C Programs

Now we know enough to start writing programs in C.

 42

Compiling and Running Your Program:

~demo> g++ -o hello hello.cpp

Let's say you've saved the C code for our �Hello World� program in a file
called �hello.cpp�. To compile this into an executable binary file that you
can run, you could type:

The qualifier �-o hello� tells the compiler that we want the output
executable file to be named �hello�. Otherwise your program will be
given the default name �a.out�. We can run this executable file by just
typing its name. Here's what will happen:

~demo> hello
Hello World!

#include <stdio.h>

int main() {

 printf(“Hello World\n”);

 return (0);

}

Note that on Galileo, by default, your current working
directory is included in the shell's search path. This
is why we can just type the name of the program and
be confident that the shell will be able to find it. If the
program were elsewhere, or if we changed to a
different working directory, we'd probably need to
type out the full path to the file, instead of just its
name. For example, this might be
�/home/bkw1a/hello�.

We could have specified other libraries on the
command line, if we wanted to use functions that
weren't included in libc.

 44

Trying Out C++-style Programming:

#include <stdio.h>

int main() {

 printf(“Hello World\n”);

 return (0);

}

�Hello World�, using C:

#include <iostream>

using namespace std;

int main() {

 cout << “Hello World” << endl;

 return (0);

}

�Hello World�, using C++:

C++ headers drop
the .h extension.

Members of the C++
library are confined to
namespaces, the
standard namespace
contains the most
common tools you
will use.

Notice the very
different syntax. Here
we send two pieces of
data to the output
stream, cout. �endl� is
equivalent to �\n�.

 45Hardware

Device Drivers (kernel modules)

Kernel (Linux)

System Calls (libc)

Command-Line
Shell

Graphical
Shell (GUI) Application

Software Layers:

(This is what we'll
be creating.)

Applications are
usually invoked
through the shell, at
the user's request.
The user types a
command or clicks on
an icon, and the shell
starts up the
application by passing
along the request to
lower layers of the
software stack.

Finally in this section, take a look at where the C
programs we write fit in with the other software that's
running on the computer. Note that the compiler
(g++) is just another application.

 46

Part 7: Reading and Writing

What if our program generates a lot of data? We could
just ust printf to spit it all out, and then write down the
results, but it would be a lot easier to write it directly
into a file, where we can look at it later. Also, what if
we need to give our program some data? We could
set the values of some variables in the program and
then re-compile the program, but it would be nicer if
the program would just ask us for the numbers it
needs, or read them from a file. Let's look at the
other Input/Output functions in C for doing things like
this.

 47

// Calculate the area of a square

#include <stdio.h>

int main() {

 int length;

 printf(“Enter the length of each side\n”);

 scanf(“%d”,&length);

 printf(“The area = %d\n”, length*length);

 return(0);

}

Reading Data from the Keyboard:
scanf is the input analog of printf. It reads data from the keyboard,
but you must tell it what kind of data it is reading, using a format
string.

The textbook by Brooks begins with many Input/Output examples,
and you�ll get lots of practice in the labs and homework assignments.

Note the ampersand (&)...

 48

#include <stdio.h>

int main() {

 int length;

 char string[10]; // A 10-character text string

 printf(“Enter a number\n”);

 scanf(“%d”,&length);

 printf(“Enter a string of text\n”);

 scanf(“%s”, string);

 printf(“len %d, string %s\n”, length, string);

 return(0);

}

When using scanf to read in the value of most types of variable, we
must prepend the character �&� to the variable name. Strings of text are
an exception to this rule, as you can see in the example below. For now,
let's treat this as a necessary piece of magic. The reason will become
clear as we learn more.

Also notice how we define a string variable.

More About scanf:

This is not covered immediately in the text, so
for starting out make sure to follow the
examples closely in writing your first
programs

 49

// Calculate the area of a square

#include <stdio.h>

int main() {

 int length;

 FILE *inFile; // define variables for our files

 FILE *outFile;

 inFile = fopen(“input.dat”,”r”); // open input file

 outFile=fopen(“outfile.dat”,”w”);// open output file

 fscanf(inFile,“%d”,&length);

 fprintf(outFile,“The area = %d\n”, length*length);

 fclose(inFile);

 fclose(outFile);

 return 0;

}

File Input and Output:
The functions fprintf and fscanf are analogous to printf and scanf, but
they operate on data files instead of on the computer display and
keyboard.

Read from one file
and write to the other.Close both files

when we're done.

Why close files? They're normally closed for you automatically
when the program ends.

First of all, your program may not be as simple as the one above.
It may take hours or days to complete, and during all that time
your program would have files open. This uses up some limited
system resources. Normally, there are limits on the number of
files you can have open at one time. If you have lots of
programs that leave files open while they're running, you may
run into these limits.

Second, the last chunk of data isn't usually written to the file until it
is closed. If one of your programs is running, and has the file
open, the file may look incomplete to any other programs that try
to use it.

It's good practice to close files as soon as you're done with them,
BUT, don't close and re-open files. Opening and closing files
takes a (relatively) long time, so your program should open and
close files as few times as possible.

 50

Next Time:
We�ll have a more systematic look at the language including
- data types
- making and using functions

This week's Lab:This week's Lab:

- Building your first programs- Building your first programs
- Basic calculations, input/output in C/C++- Basic calculations, input/output in C/C++

- Let me know if you don't have a Galileo account yet.- Let me know if you don't have a Galileo account yet.
- Complete the Prelab BEFORE 10am Thursday- Complete the Prelab BEFORE 10am Thursday
- Reading assignment: Brooks chapter 1, and - Reading assignment: Brooks chapter 1, and
 sections 1-2.2 of chapter 2. sections 1-2.2 of chapter 2.

Brooks Ch. 1, Ch. 2 sections 1-2.2

 51

The End

Thanks!

