

 1

Physics 2660
Lecture 2: C � Part 1

Today:
�Variables in C
� Data Operators
� Functions
� Debugging Tips

 2

Announcements:

Supervised lab hours in Room 22:

Monday 2 - 4 pm
Tuesday 11 am - 12 noon

Homework: Electronic deadline Thurs 10:00am
Printed, signed copies due in lab.

 3

Part 1: StoragePart 1: Storage

We've talked about storage indirectly for a while. Now
let's look at a few details of the way a computer
stores data.

 4

Bits and Bytes:

0

1
The data in your computer is all stored in bunches of
microscopic switches. Each switch can only have two
values, �1� or �0� (�on� or �off�). The amount of
information stored by one switch is called a �bit�, and
we often talk about flipping bits on or off.

These bits are usually grouped together in sets of eight.
 A group of eight bits is called a �byte�.

1 0 1 1 0 1 1 0
Why eight bits? First, because eight is a power of two (23), making it
convenient for binary (base-2) arithmetic. (Just as 10, 100 or 1000 are
convenient in base-10.) Second, because the very popular early Intel
CPUs used data in 8-bit chunks.

Some people claim that �bit� is a shortened form of
�binary digit�, but I'm skeptical.

This shows the relative sizes of various units of
storage, from the smallest (a single byte, only big
enough to hold one character) to a petabyte, on the
order of magnitude of the Library of Congress.

 6

cdouble float int float

Storing Variables:

...

When your program runs, it sets up an area in the computer's
memory for storing the value of each of your variables:

8 bytes 4 bytes8 bytes

4 bytes

1 byte

4 bytes

Different types of variables are given different amounts of space.
Bad things can happen if you try to stick the wrong type of data into a
variable.

velocity x number a y

What would happen if you tried to stick a �double� value the variable
named �x�, above?

Answer: If you succeeded, the data would spill over
into the adjoining variable (�number�) and corrupt it.

The C compiler tries to prevent this sort of thing two
ways:

� It warns you when try to stick the wrong type of data
into a variable, and

� It tries, when reasonable, to re-cast your data into a
format that's appropriate for the variable into which
you're putting it.

 7

1 0 1 1 0 1 1 0
0 0 1 1 0 0 1 1
0 1 1 0 0 1 0 0
1 0 0 1 1 1 1 1

Storage Example:

4 bytes
(32 bits)

Here's how we might store an integer value, using 4 bytes of storage
space. We have 32 bits of data, so we can store any number from zero
up to 232-1 (which is 4,294,967,295).

But what if we need to store negative numbers?

In that case, we can reserve one of the bits to say whether the number
is positive or negative. This leaves us with only 31 bits to store the
number itself, so we can only store numbers up to +/- 2,147,483,647.

This is one reason operating systems sometimes have
limits on the size of disks or the amount of memory
they can accomodate. If, for example, memory
addresses are stored in 32-bit variables, the most
memory you can use is 4,294,967,295 bytes (4
Gigabytes). This is the reason 32-bit operating
systems have trouble with more than 4GB of
memory.

 8

Part 1: VariablesPart 2: Variables

OK, now let's take a closer look at variable definitons.

 9

More Variable Types:
C/C++ are strongly typed programming languages.
This means all variables must be declared as a particular data type
before they can be used in your program.
The C language supports the following variable or data types:

Integers short A �small� integer
int A �medium� integer
long A �large� integer
unsigned short Positive-definite versions of

the types above.unsigned
unsigned long

Floating-point
numbers

float A real (floating-point)
number

double A �double precision�
floating-point number

long double Even higher precision.
Characters char A character of text.

The C/C++ standard doesn't tell us exactly how big the
memory area for each of these types should be. It
just says, for example, that �int� must be at least as
big as �short�, and �long� must be at least as big as
�int�. Different compilers will, in general, assign
different sizes to these variable types.

 10

Declaring Variables in C:

#include <stdio.h>
int main() { // start of main function

 int an_int = 100; // start of variable declarations
 float a_float=0.1;

 a_float = a_float * 100.5; // start of program statements
 an_int = an_int / 7;
 printf(“%d %f\n”, an_int, a_float);
 return(0);
}

In C variables must be declared at the beginning of the
function in which they are used.

For example:

Note format specifiers for integer and floating-point
numbers. We'll talk more about this later.

 11

#include <stdio.h>
int main() { // start of main function

 float a_float=0.1; // variable declaration

 a_float = a_float * 100.5; // program statement
 int an_int = 100; // variable declaration
 an_int = an_int / 7; // program statement

 printf(“%d %f\n”, an_int, a_float);
 return(0);
}

In C++ variables may be declared anywhere in the code
For example:

Declaring Variables in C++:

� This can sometimes make your code more readable, by allowing you
to define your variables near the place where you use them.
� On the other hand, it may be confusing when a variable is used in
many places in a large program, because you don't immediately know
where to look for the variable's definition.

 12

#include <stdio.h>
int main() {
 float a;
 a = a * 100.0;
 printf(“%f\n”, a);
 return(0);
}

Default Values for Variables:
What does the following code print?

Answer:
� C++: 0.0, because variables are initially set to 0
� C: Could be 0, but technically undefined. C does not initialize
variables. They could have random values depending on what was
previously in memory.

It's best to never assume default values for variables, even in C++. It's
bad style and makes your code harder to maintain.

Why would you do this? One reason is that it can make
your program run faster. We know that the value of
PI is never going to change. So, instead of having to
spend time looking up the value of a variable (say,
�PI�) each time it's used, your program has the value
�hard-wired� in place, right where it's needed.

 14

Problems with Preprocessor Macros:

#include <stdio.h>
#define POSITION 10+20
int main() {
 double x = 3*POSITION;
 printf(“The value of x is %d\n”, x);
 return(0);
}

#include <stdio.h>
int main() {
 double x = 3*10+20;
 printf(“The value of x is %d\n”, x);
 return(0);
}

The value of x is 50
Why? Because the preprocessor only does �find and replace�. After
the preprocessor is finished, the code looks like this:

The preprocessor doesn't do the
math. It just sticks the text into the
spot where �POSITION� was.

The following code may do something you don't expect. Why doesn't it
say that the value is 90?

There are a couple of other dangers associated with
preprocessor macros:

� The preprocessor may replace a string you don't
want replaced.

� Your macro may overwrite the value of another
macro, defined in some header file you include.

 15

Modern compilers give you another way to define constants, while
avoiding the potential problems associated with preprocessor macros.

Use variables instead, but declare them �const�:
#include <stdio.h>
// Define constant values. Compiler will protect these:
const float RADIUS_OF_EARTH = 6378.1; // in km
const float PI = 3.14159;

int main() {
 printf(“The circumference of Earth = %f\n”,
 2.0*PI*RADIUS_OF_EARTH);
 return 0;
}

Constant Data Types:

If your program tries to alter the value of a �const� variable, the compiler
will let you know about it. Using const is generally better practice than
using preprocessor macros.

This has the same speed advantage as preprocessor
macros, but without the pitfalls. When the compiler
writes out a binary executable file, it inserts the
values of all of the �const� variables directly into the
places where they're needed, so the program doesn't
need to look up these values while it's running.

 16

Variable Storage:
A variable declaration determines how its data are physically stored in
memory.

In general the details of this storage differ from machine type to machine
type, OS to OS, and programming language to programming language.

All data are ultimately stored as binary patterns, but the format differs
depending on the variable's type.

int i = 4; 00000100 00000000
00000000 00000000

float f = 4; 00000000 00000000
10000000 01000000

char c = '4'; 00110100

Here's how one
compiler, on
one computer,
stores the value
�4� when it's an
int, float or
char:

Above, we see how the same number is stored when
it's interpreted in three different ways. As you can
see, the results are very different.

If we read the data in the top right box, but interpret it
as a floating-point number instead of an integer, we'll
get some unexpected value.

 17

The �sizeof� Statement:
The �sizeof� statement can be used to find out the number of bytes used
by a variable or a data type.

sizeof(int) returns 4 4 bytes used to store an integer

sizeof(double) returns 8 8 bytes used to store a double

sizeof(char) returns 1 1 byte used to store a char

sizeof(5/2) returns 4 It's an integer

sizeof(5/2.0) returns 8 It's a double

In general, you'll get different results for the same data type on different
computers. The sizes vary depending on operating system, compiler
and computer architecture.

Results for g++ on Galileo:

Note the example of automatic type conversion. The
last line uses an integer and a double constant. The
result is a double. At compile time the highest
precision data type sets the resulting data type.

It's also interesting to look at sizeof(short), sizeof(int)
and sizeof(long), to see how they differ. The C
standard doesn't define how big they should be, or
even say that �long� has to be any bigger than �int�. It
just says that each type in this series must be at
least as big as the one preceding it. Some compilers
make them all the same size.

 18

#include <stdio.h>
int main(){
 float b;
 // return size of a variable or data type in bytes
 printf("sizeof(int) = %d bytes\n",sizeof(int));
 printf("sizeof(b) = %d bytes\n",sizeof(b));
 printf("sizeof(5/2.0) = %d bytes\n",sizeof(5/2.0));
 printf("sizeof((int)(5/2.0)) = %d bytes\n",
 sizeof((int)(5/2.0)));
 return(0);
}

A sizeof Example:

sizeof(int) = 4 bytes
sizeof(b) = 4 bytes
sizeof(5/2.0) = 8 bytes
sizeof((int)(5/2.0)) = 4 bytes

This shows how sizeof can actually be used in a
program.

 19

Casting Variables in C:

In C parlance, converting a data from one type to another is called
�casting�.
Casting may increase or decrease the precision of your data storage.
Consider:

float a=101.1;
int i = 0;
i = a;
a = i+1;

Downward cast, setting i equal to
101 (lower precision). A cast to
int always truncates!

Upward cast, setting a to a value
of 102.0 (higher precision).

These are called implicit casts. We did no explicit conversion, the
compiler does it for us.

 20

Avoiding Implicit Casts:
Upward casting usually proceeds without complaint, but automatic or
implicit downward, resolution-reducing casts, can generate a compiler
warning:

10: float a=101.1;
11: int i = 0;
12: i = a;

~/demo> g++ cast.cpp
cast.cpp: In function `int main()':
cast.cpp:12: warning: assignment to `int' from `float'

Implicit downward cast,
giving i a value of 101
(lower precision).

cast.cpp

Try to avoid implicit casts. Good programming style uses explicit casts,
where data are consciously managed by the programmer.

 21

Explicit Casting:
Here's an example of an explicit cast to control conversion of data types:

10: float a=101.1;
11: int i = 0;
12: i = (int) a;

Explicit downward cast
(i = 101).

The syntax for implicit casts is
�(type)variable�. For example:

i = (int) a;
g = (float)i;
h = (double)a;

When you make an explicit cast, the compiler assumes you know what
you're doing, and doesn't generate any warning messages.
Note that the compiler is unlikely to complain about double/float casts.
It's good practice to always do your own casting, rather than relying on
implicit casts. To help with this, make sure you have the same data
types on right and left side of each assignment statement (�=� sign).

This is analogous to checking for proper units in Physics.

 22

Part 3: Formatted I/O

 23

I/O Format Specifiers:
In your first lab, you saw the use of I/O format specifiers to control the
output and the input of data.
Here are some more examples:
printf(“%d\n”, im_an_int); // print an integer
scanf (“%f\n”, &a_float); // read a float

i,d,ld,

li

Integer data or long integer data.

f,lf Floating-point number in decimal notation (�float� or
�double�).

e,E Floating-point numbers in Scientific Notation, like
�6.02e+23�. You can choose upper or lower case by
picking �e� or �E�.

g,G Floating-point numbers, using either Scientific Notation or
regular notation, whichever is shorter.

c,s Single characters, or strings of characters.

Some common format specifiers:

Remember: �d� doesn't stand for �double�!

�i� vs. �d� controls whether numbers like �010� are
interpreted as octal (I) or decimal (d), when reading
numbers. We'll talk about this when we look at the
scanf function.

The specifier �lf� is allowed, and is sometimes used for
�double�s in printf. It's not necessary in the current
standard printf, since all floats are promoted to
doubles before being used by that function. The �lf�
specifier IS necessary for scanf, though, since it tells
scanf what type of variable to convert its input into.

Don't confuse �%lf� with �%Lf�, which is actually
necessary for �long double� types.

 24

Format Mismatches:
I/O format specifiers are important. They translate the internal
representation of the data into the text on your screen.

The data type must match specifier, or printf will misinterpret the data in
translating it for output.

printf("%f",5/2) 0.000000� OOPS (integer data!)

printf("%d",5/2) 2� OK

printf("%f",(float)(5/2)) 2.000000� OK

printf("%f",5/2.0) 2.500000 � OK

printf("%d",5/2.0) 0 � OOPS (double float data!)

printf("%d",(int)(5/2.0)) 2 � OK

Similar care must be taken with scanf statements.

 25

Controlling the Appearance of Output:
In general, the structure of a format specifier is:
%[parameter][flags][width][.precision][length]type

All elements except �%� and the type are optional.

int ia=12, ib=13;
float fx = 123.456;
printf(“%10d %10d\n”,ia,ib);
printf(“%8.4f\n”, fx);
printf(“%-d %-d\n”, ia, ib);

Examples:

 12 13
123.4560
12 13

012345678901234567890

ints printed in 10 columns w/
spaces between.

float printed in 8 columns, 4
numbers after decimal.

int printed left justified.

By default, data are right-justified. The flag �-� causes them to be left-
justified.

Note that �width� is the whole width of the number, and
�precision� is the number of characters to the right of
the decimal place.

The �length� element is a character like �l� or �L�, as in
�%ld�.

The �parameter� element allows you to specify which
variable this format specifier will apply to, regardless
of the order of the arguments to printf.

Another useful �flag� is �0�, which causes numbers to
be padded on the left with zeros, like �001�, �002�,
etc.

 26

I/O Control (Escape) Characters:

\n Add a new line
\f Form feed (new page)
\b Move back one character
\r Go to beginning of line
\t Go to next tab stop
\a Ring the bell

\\ Print the character \
\” Print the character “

printf(“This is a line.\nThis is another line\n”);
printf(“This is a double-quote: \”\n”);

Some sequences of characters beginning with a backslash have a special
meaning when used in printf's format string. These are sometimes called
�escape sequences�.

Here's a list of commonly-
used escape sequences.
Among other things, these
control the cursor on your
monitor before/between/after
characters are printed.

Some usage examples:

 27

Output in C++ with cout:
C++ allows a second, very different, way to send output to the screen.
For simple output using this method, you don't need to say what kind of
data you are sending.

For example:
#include <iostream>
float fx = 123.456;
int ia = 99;

cout << “My float= ” << fx << “ My int= ” << ia << endl;

No need to specify
data type. Insert a newline.

Think of this as a stream of data flowing leftward into cout, which then
makes it appear on your screen.

The cout statement above is equivalent to this printf statement:

printf(�My float= %f My int= %d\n�, fx, ia);

You can use either cout or printf in programs compiled with g++, but its
best not to mix them in the same program.

 28

Input in C++ with cin:

For simple input, cin can be used in C++.

For example:

#include <iostream>
...
int ia;
float fx;
cout << “Enter an int and a float” << endl;
cin >> ia >> fx;

By convention C++
headers have no
extension.

Think of this as data flowing from your keyboard, through cin, and
into the two variables, ia and fx.

The cin statement above is equivalent to this scanf statement:

scanf(“%f %d\n”, &ia, &fx);

Note that no ampersand is required
here, unlike scanf.

While you may use C++ style I/O in this class, we don't
recommend it in general. Here's why:

� C-style I/O requires that you pay explicit attention to your
variable types (this is good practice for beginning
programming).

� It's much easier to control your output formating with C-
style formatters.

� There's more consistency between screen and file I/O
syntax with C-style.

� We can avoid a lot of language background and
concentrate on problem solving/computing sooner. C++
concepts (and other languages too) will be easier to
understand after getting some computing experience.

 29

Part 4: OperatorsPart 4: Operators

 30

Types of Operators:
Operators are used to manipulate or to compare data.

The operators in C can be sorted into the following categories:

� Arithmetic (+,-,*,/)
� Assignment (=)
� Increment / Decrement (++,--)
� Relational and Logical (&&,||)

� Bitwise (&,|)
� Pointer / member operators (&, *, ., ->)

Well introduce these later, but lets discuss the others.

 31

+ a+b Addition
- a-b Subtraction
* a*b Multiplication
/ a/b Division

% a%b Remainder (modulo)

Arithmetic Operators:

Binary Operators:

- -a Arithmetic inverse
Unary Operators:

C and C++ support the following arithmetic operators. Note that some
operators are binary (operating on two numbers) and some are unary
(operating on one number).

In programming language terms, the operators in the
top table are called �binary infix operators�, because
they operate on two arguments, and the operator is
placed between the arguments.

The �-� operator is a �unary prefix operator�.

 32

Operator Usage Result
+= a += b a = a+b
-= a -= b a = a-b
*= a *= b a = a*b
/= a /= b a = a/b
%= a %= b a = a%b

Assignment Operators:
The simplest assignment operator is �=�, which is used to set the value of
a variable equal to some expression (e.g., �a = b�).
C also offers an array of additional assignment operators that combine
assignment with the various arithmetic functions:

Be careful when you're typing these. It's easy to type �=+� instead of
�+=�!

 33

Increment/Decrement Operators:
The unary operators ++ and -- add or subtract 1 from the operand:

increment a++ or ++a � a = a+1
decrement a-- or --a � a = a-1

Usage:

Notice that these operators can be used either before or after the
variable. Their action differs slightly, depending on which of these is
chosen. Here are some examples:

int a = 1;
a++;
++a;

x = a++ * 2;
x = ++a * 2;

Set a to a+1 before moving to the
next line.

Set a to a+1 immediately upon
entering this line.

Set x = a*2, then set a = a+1.

Set a = a+1, then set x = a*2.

It's best to avoid statements like the last two unless you have a good
reason to use them.

Hence the name �C++� for the successor to C.

 34

Relational and Logical Operators:
These operators test or combine logical expressions. The answer to
a test is either true (not 0) or false (0). Any non-zero value is
considered true.

== Equality a==b

!= Inequality a!=b

< Less than a Greater than a>b

<= Less or equal a<=b

>= Greater or equal a>=b

! Logical NOT. Invert a test or
true/false value

!a

&& Logical AND (a==b) && (c==d)

|| Logical OR (a<=b) || (c>b)

We'll see much more of the relational and
increment/decrement operators next time when we
talk about control structures.

 35

Operator Precedence:

x = a + b * c
When we see a statement like this, we
know that we should first multiply �b*c�
and then add �a�.

By convention, multiplication & division precede addition & subtraction.
Here's a table showing the order of precedence of some common
operators in C and C++:

First a++, a--, type casts

Second a*b, a/b, a%b

Third a+b, a-b

Fourth a&&b, a||b

To clarify statements, you can use parentheses as needed or split
statements into several steps. Make your intentions clear and you'll
be much happier.

Operations of
equal precedence
are evaluated from
left to right.

Note that the C++ standard defines fourteen separate
levels of precedence (your textbook talks about ten
of them). For more details, see:

http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

Don't rely on operator precedence when writing
complex statements.

 36

Bad Coding Example:

a=1;
b=2;
c=3;
d=4;

f= ++a + c*d/a++ + b;

Don't even think about
writing code like this!
What does this even do?

a += 1;
f = (a+b) + c*d/a;
a += 1;

a = 2

f = (2+2) + 3*4/2 = 10

a = 3

Here's a better way to do the same thing:

 37

Another Bad Coding Example:
float a=10.0;
float b=5.0
float c;

c = 1 / 2 * a * b;

What value
does c have?

Precedence rules dictate:
1) 1/2 = 0 by integer division
2) 0*10.0 = 0.0
3) 0.00*5.0 = 0.0 So, c is zero!

c = 1/2.0 * a * b;
c = 0.5 * a * b;
c = a * b / 2;
etc...

Some possible fixes:

Of course, these assume that
you didn't really mean to type:

c = 1/(2*a*b);

If you're used to writing equations on paper, you'll need
 to be careful when you translate your equations into
C. A two-dimensional representation like this:

 1

 2ab

needs to be tranlated into a linear representation like
this:

 1/(2*a*b)

Sometimes this can make the equation look very
different.

 38

Part 5: Functions

As we said earlier, C is a very simple language with a
small vocabulary. It's extended through functions.
These are found in standard libraries that are usually
installed along with the compiler, but you can also
create functions of your own to extend C's
functionality.

 39

�Intrinsic� Functions:
While the text makes reference to intrinsic functions, it's more accurate to
call them the C Standard Library Functions.

These are not part of the C
language, but reside in a
library of useful functions that
evolved along with C and is
now also standardized across
compiler distributions and
hardware platforms.

To use these functions it was
necessary to first include a
header file so the compiler
would recognize their
input/output interfaces. The
actual code is pre-compiled
and is linked to your source
code to make a working
program.

Source Code
File

Binary
Executable
File

Preprocessor

Compiler

Linker

g++

libc,libm,
etc.

printf
scanf
fopen
fclose
etc...

Header Files

In this class we will frequently use functions defined in:

stdio.h tools to input and output data
and
math.h tools to implement common math functions

Familiarize yourself with the available functions by reading
the text and your Programmer's Reference.

Note that, by default, the GNU C compiler (gcc) will only link
your program with the �libc� library. If you include math
functions (like sqrt) in your program, you'll need to explictly
tell gcc to also link with the math library (libm) by adding
the switch �-lm� to your gcc command, like this:

gcc -o myprog myprog.c -lm

We'll be using the GNU C++ compiler (g++), which
automatically links with both libc and libm, so we won't
have to worry about this.

 40

Arguments of Math Functions:
Note that C's math functions take and return parameters that are of
type double:

double sqrt(double x); //prototype for sqrt function

You'll find a line like this in the math.h header file.

The compiler reads this from <math.h>, then when it encounters a
call to sqrt() in your code, it can check that you are calling it correctly:

� giving the right number of parameters,
� using the output value properly
� etc...

For example:

int i = sqrt(10.);
float q = sqrt(10.,2.);

This will generate a warning.

This will generate an error.

This is one reason we usually use �double� for floating-
point numbers in this class.

 41

User-Defined Functions:
Writing your own functions in C is very easy, and beneficial in several
ways. Using functions can help you:
� Avoid duplicating the same code many times within a program.

� If you find yourself typing the same set of statements again and again, it's time to
think about creating a function to replace them.

� Make your program easier to modify.
� After you've encapsulated a task within a function, you can easily modify it to make

it better, without having to modify the rest of your program.

� Re-use your code in other programs.
� Once you've written your function, you can re-use it in other programs.

� Catch programming mistakes.
� The compiler makes some syntax checks when a function is called, so this is an

opportunity to catch mistakes.

� Avoid accidentally changing variables.
� As we'll see later, variables inside a function are independent from variables of the

same name in other functions.
It's much nicer to type y = sqrt(x) than to write out the whole square
root algorithm every time you need it!

 43

Designing a Function:
#include <stdio.h>
#include <math.h>
double distance(double xstart, double ystart,
 double xend, double yend);
int main () {
 // (coordinates omitted for brevity)...

 double d01 = distance(x0,y0,x1,y1);
 printf ("d01 is %f\n",d01);

 double d12 = distance(x1,y1,x2,y2);
 printf ("d12 is %f\n",d12);

 double d23 = distance(x2,y2,x3,y3);
 printf ("d23 is %f\n",d23);

 return(0);
}

double distance (double xinit, double yinit,
 double xfinal, double yfinal) {
 double d;
 d = sqrt((xfinal-xinit)*(xfinal-xinit) +
 (yfinal-yinit)*(yfinal-yinit));
 return(d);
}

To make things better, we can
create a new function, called
�distance�, to calculate the
distance.

Function
prototype

Using (�calling�)
the function

Function definition

We could easily
modify the distance
function to return, say,
travel time (adjusted
for a headwind from a
given direction!). We'd
only need to make the
change in one place:
the function definition.

 44

Prototype, Arguments and Return:
#include <stdio.h>
#include <math.h>
double distance(double xstart, double ystart,
 double xend, double yend);
int main () {
 // (coordinates omitted for brevity)...

 double d01 = distance(x0,y0,x1,y1);
 printf ("d01 is %f\n",d01);

 double d12 = distance(x1,y1,x2,y2);
 printf ("d12 is %f\n",d12);

 double d23 = distance(x2,y2,x3,y3);
 printf ("d23 is %f\n",d23);

 return(0);
}

double distance (double xinit, double yinit,
 double xfinal, double yfinal) {
 double d;
 d = sqrt((xfinal-xinit)*(xfinal-xinit) +
 (yfinal-yinit)*(yfinal-yinit));
 return(d);
}

The prototype defines the
syntax for the function.
(What arguments it takes,
and what type of data it
returns.)

Our function takes
four �doubles� as
arguments, and
returns a double.

The names of the arguments
in prototype, function call and
function definition don't need
to match, but the types do.

 45

Making Functions Re-useable:
#include <stdio.h>
#include <math.h>
double distance(double xstart, double ystart,
 double xend, double yend);
int main () {
 // (coordinates omitted for brevity)...

 double d01 = distance(x0,y0,x1,y1);
 printf ("d01 is %f\n",d01);

 double d12 = distance(x1,y1,x2,y2);
 printf ("d12 is %f\n",d12);

 double d23 = distance(x2,y2,x3,y3);
 printf ("d23 is %f\n",d23);

 return(0);
}

double distance (double xinit, double yinit,
 double xfinal, double yfinal) {
 double d;
 d = sqrt((xfinal-xinit)*(xfinal-xinit) +
 (yfinal-yinit)*(yfinal-yinit));
 return(d);
}

mylib
distance()
etc...

mylib.h

Some day, the prototype for
your function could be moved
into an external header file, to
be #included as needed...

and the function itself could be
added to your own library of
functions, for later use. We'll
see how to do this later.

 46

Modularizing Code:

We will be using many predefined functions as the class progresses
and you will be strongly encouraged to get into the habit of writing
code that breaks work up into bite-sized functional chunks.

Later you will learn how to keep your own libraries of functions that
you can reuse over and over without ever looking at the source
code again (if it's bug free!)

Modularizing your programming jobs makes it unnecessary to
continually reinvent solutions or to clutter the visual flow of your
programs with commonly used blocks of code.

 47

Part 6: Debugging

Now let's talk about finding bugs in our programs.

 49

Compile-time Bugs:

Rule of: thumb When you get a large number
of error messages from the compiler, just look
at the first one.
Errors cascade, so one bad line will corrupt
many following lines.

gmake l2linux
gmake[1]: Entering directory `/root/code/l2linux'
g++ -g -D_L2_ONLINE_ -DLINUX -DDEBUGLVL=5 -I ../include/ -c -o . /obj/MemoryMap.o src/MemoryMap.cpp
src/MemoryMap.cpp:26: parse error before :̀:' token
src/MemoryMap.cpp:28: `len' was not declared in this scope
src/MemoryMap.cpp:28: ISO C++ forbids declaration of `setSize' with no type
src/MemoryMap.cpp:29: ISO C++ forbids declaration of `_location' with no type
src/MemoryMap.cpp:29: invalid conversion from v̀oid*' to `int'
src/MemoryMap.cpp:30: parse error before ìf'
src/MemoryMap.cpp:32: `perm' was not declared in this scope
src/MemoryMap.cpp:32: ISO C++ forbids declaration of `setPermissions' with no
 type
src/MemoryMap.cpp:35: parse error before ìf'
src/MemoryMap.cpp:43: syntax error before `++' token
src/MemoryMap.cpp:44: `loc' was not declared in this scope
src/MemoryMap.cpp:44: ISO C++ forbids declaration of `map' with no type
src/MemoryMap.cpp:45: parse error before }̀' token
src/MemoryMap.cpp:48: syntax error before :̀ :' token
src/MemoryMap.cpp:50: ISO C++ forbids declaration of `setPermissions' with no
 type
src/MemoryMap.cpp:50: invalid conversion from c̀onst char*' to `int '
src/MemoryMap.cpp:53: parse error before ìf'
src/MemoryMap.cpp:62: syntax error before `++' token
src/MemoryMap.cpp:66: syntax error before :̀ :' token
src/MemoryMap.cpp:69: syntax error before -̀-' token
src/MemoryMap.cpp:75: syntax error before :̀ :' token
src/MemoryMap.cpp:77: ISO C++ forbids declaration of `_location' with no type
src/MemoryMap.cpp:77: `addr' was not declared in this scope
src/MemoryMap.cpp:77: `_length' was not declared in this scope
src/MemoryMap.cpp:77: `_permissions' was not declared in this scope
src/MemoryMap.cpp:78: `_memdev' was not declared in this scope
src/MemoryMap.cpp:78: `_base' was not declared in this scope
src/MemoryMap.cpp:79: parse error before ìf'
src/MemoryMap.cpp:83: ISO C++ forbids declaration of `printf' with no type
src/MemoryMap.cpp:83: `int print f' redeclared as different kind of symbol
/usr/include/stdio.h:300: previous declaration of ìnt printf(const char* , ...)
 '
src/MemoryMap.cpp:83: invalid conversion from c̀onst char*' to `int '
src/MemoryMap.cpp:85: `_base' was not declared in this scope
src/MemoryMap.cpp:85: `addr' was not declared in this scope
src/MemoryMap.cpp:85: ISO C++ forbids declaration of `printf' with no type
src/MemoryMap.cpp:85: redefinition of ìnt printf'
src/MemoryMap.cpp:83: `int print f' previously defined here
src/MemoryMap.cpp:85: initializer list being treated as compound expression
src/MemoryMap.cpp:86: parse error before r̀eturn'
src/MemoryMap.cpp:96: syntax error before :̀ :' token
src/MemoryMap.cpp:98: ISO C++ forbids declaration of `_location' with no type
src/MemoryMap.cpp:98: redefinition of ìnt _location'
src/MemoryMap.cpp:77: `int _location' previously defined here
src/MemoryMap.cpp:98: `_length' was not declared in this scope
src/MemoryMap.cpp:98: `_permissions' was not declared in this scope
src/MemoryMap.cpp:99: `_memdev' was not declared in this scope
src/MemoryMap.cpp:99: `_base' was not declared in this scope
src/MemoryMap.cpp:100: parse error before ìf'
src/MemoryMap.cpp:104: ISO C++ forbids declaration of `printf' with no type
src/MemoryMap.cpp:104: redefinition of `int print f'
src/MemoryMap.cpp:85: `int print f' previously defined here
src/MemoryMap.cpp:104: invalid conversion from `const char*' to `int'
src/MemoryMap.cpp:106: `_base' was not declared in this scope
src/MemoryMap.cpp:106: ISO C++ forbids declaration of `printf' with no type
src/MemoryMap.cpp:106: redefinition of `int print f'
src/MemoryMap.cpp:104: `int printf' previously defined here
src/MemoryMap.cpp:106: initializer list being treated as compound expression
src/MemoryMap.cpp:107: parse error before r̀eturn'
src/MemoryMap.cpp:113: ISO C++ forbids declaration of `print f' with no type
src/MemoryMap.cpp:113: redefinition of ìnt printf'
src/MemoryMap.cpp:106: `int printf' previously defined here
src/MemoryMap.cpp:113: invalid conversion from c̀onst char*' to ìnt'
src/MemoryMap.cpp:115: `_length' was not declared in this scope
src/MemoryMap.cpp:115: `_base' was not declared in this scope
src/MemoryMap.cpp:115: ISO C++ forbids declaration of `print f' with no type
src/MemoryMap.cpp:115: redefinition of ìnt printf'
src/MemoryMap.cpp:113: ìnt printf' previously def ined here
src/MemoryMap.cpp:115: initializer list being treated as compound expression
src/MemoryMap.cpp:116: ISO C++ forbids declaration of `print f' with no type
src/MemoryMap.cpp:116: redefinition of ìnt printf'
src/MemoryMap.cpp:115: ìnt printf' previously def ined here
src/MemoryMap.cpp:116: initializer list being treated as compound expression
src/MemoryMap.cpp:117: parse error before `}' token
src/MemoryMap.cpp:121: syntax error before `::' token
src/MemoryMap.cpp:123: ISO C++ forbids declaration of `_location' with no type
src/MemoryMap.cpp:123: redefinition of `int _location'
src/MemoryMap.cpp:98: `int _location' previously defined here
src/MemoryMap.cpp:123: invalid conversion from `void*' to ìnt'
src/MemoryMap.cpp:124: parse error before }̀' token
src/MemoryMap.cpp:126: syntax error before `::' token
src/MemoryMap.cpp:129: parse error before `while'
src/MemoryMap.cpp:146: syntax error before `++' token
src/MemoryMap.cpp:152: ISO C++ forbids declaration of `unmap' with no type
src/MemoryMap.cpp:153: `loc' was not declared in this scope
src/MemoryMap.cpp:153: ISO C++ forbids declaration of `map' with no type
src/MemoryMap.cpp:153: redefinition of `int map'
src/MemoryMap.cpp:44: `int map' previously defined here
src/MemoryMap.cpp:154: parse error before }̀' token
src/MemoryMap.cpp:158: syntax error before `::' token
src/MemoryMap.cpp:161: ISO C++ forbids declaration of `_base' with no type
src/MemoryMap.cpp:161: `tmpaddr' was not declared in this scope
src/MemoryMap.cpp:162: syntax error before `<<' token
src/MemoryMap.cpp:172: syntax error before `::' token
src/MemoryMap.cpp:176: syntax error before `<<' token
gmake[1]: *** [MemoryMap.o] Error 1
gmake[1]: Leaving directory /̀ root/code/ l2linux'
make: *** [default] Error 2

Here's an excerpt from the error messages
observed when compiling a complicated
piece of code.

This looks bad, but the first error gives us
the solution:

src/MemoryMap.cpp:26: parse error before ...

Looking around line 26, the programmer found
that line 25 was missing its semicolon. Often
one simple fix will clear up many errors.

(And often that simple fix is a semicolon!)

 50

Some Common Compile-time Bugs:

My picks for the top 5 compile time errors:

5) Missing header file or #include statement,

4) Forgot to declare a variable,

3) Missing {} or () or comma,

2) General typo,

1) Missing semicolon! ;;

 51

Run-time Errors:
Run time errors are the result of syntactically correct code doing
incorrect things in practice.

At the most innocent level, you may have harmlessly corrupted
data:

int i=25;
printf (�%f \n�,i);

Wrong format specifier
prints 0 instead of 25

However runtime errors will often show up by crashing your program
and causing it to create a �core dump�.

A core dump is a snapshot of the state of your program at the time of
the crash. We'll learn more about core dumps when we cover high
level debugging tools.

 52

Typical Program-stopping Run-time Errors:
Segmentation faults:
Your program has tried to access memory that is not allocated to it. That
is, it's trying to manipulate data in memory locations it has no privilege to
access. This is the OS limiting your access to resources.

Examples:
1) int i;

scanf ("%d", i); // should have used &i

2) FILE *outfile;
 // outfile = fopen (�my_file.txt�,�w�);

fprinf(outfile, �hello\n�); // bad things happen if you try
// to access an unopened file!

Divide by zero:
Example:
 int i = 1;
 float f = 3.14/(i-1);

Divide by zero generates a �floating exception�
error for integer arithmetic, but with floating-point
arithmetic your program will continue to run,
using the special values �inf� or �NaN� (�Not a
Number�) as the result of the division. This is
almost certainly not what you want.

 53

Tracking Down Run-time Errors:
Your runtime error messages will typically give you little to go on in
tracking down the problem.

This coding error:
int i;
scanf ("%d", i); // should have used &i

generates this output:
Segmentation fault ---- that's it! No line number, even.

You can try narrow down error locations by placing printf's in your code:

int i;
printf(�about to do the read\n�);
scanf ("%d", i); // should have used &i
printf(�finshed the read\n�);
etc...

 54

Next Time:
We'll begin looking at program control structures:

if (a > 1) {
 printf(“Hello There!\n”);
 b = a * 2;
 printf(“b is now equal to: %d\n”,b);
}

int i;
for (i = 0 ; i < 10 ; i++) {
 printf(“loop number %d\n”, i);
}

 55

The End

Thanks!

