

 1

Physics 2660
Lecture 4: C � Part 3

Today
� More on Loops
� Pointers
� More on functions
� Static Variables
� Performing integrations with random numbers

 2

Part 1: More on Loops

As we've said before, loops are the reason computers
exist. Any individual calculation can be done without
too much effort by a human being. But when that
calculation needs to be repeated hundreds,
thousands or millions of times, that's when you need
a computer.

 3

Infinite Loops:

for (i=0 ; i<100 ; i++){
 do_sum_stuff();
 i = i-1;
}

i=2;
while (i>1) {
 do_something();
}

BAD! Don't operate on
counter variables!

These two examples will run forever:

Runs forever if
condition is true.

A program stuck in an
infinite loop can be stopped
using control-C (^C).

Infinite loops are common programming problem.
They typically result from an improper loop condition, or from operations
on a counter variable.

Here are some examples of things that can go wrong
when you try to write a loop into your program.

 4

Checking the Progress of Long Loops:
Sometimes you will have loops that take a very, very long time to
complete. You can observe whether the loop is behaving correctly adding
conditional print statements:
for (i=0 ; i<100 ; i++){
 do_sum_stuff();

 for (j = 0 ; j<1000000 ; j++) {
 do_more_stuff();

 if (!(j%100000))
 printf(“working i=%d, j=%d\n”,i,j);

 }
}

Runs 10^8 times. This
could take a while!

Satisfied every 100K
iterations of j.

Occasional printf statements can be used
to generate status information, print
intermediate results of calculations, give
you a sense of the �heartbeat� of the
program, and so forth.

working i=0, j=0
working i=0, j=100000
...
working i=1, j=0
...
working i=99, j=900000

Output:

Let's parse what that �if� statement does:
�j%100000� uses the modulo operator (%) to get the

remainder after dividing j by 100,000. Whenever j is
a multiple of 100,000, �j%100000� will be zero.

The �!� means �not�. If �A� is zero, then �!A� will be
one, or �true� in a test condition. If �A� is non-zero,
then �!A� will be �false�. So, the �if� statement says
�Do the following only when j is a multiple of
100,000.�

 5

#include <stdio.h>
char[10] month;
int hr,min,sec;
int status;
int count=0;
float x;
FILE *infile;

infile = fopen(“file.dat”,”r”);
while (1) {

status = fscanf(infile,“%s %i %i %i %f”,
 month,&hr,&min,&sec,&x);

if (status == EOF) break;
count++;

}

Reading Files with Loops:
Here's one way to read a file of unknown size:

Open file for
read access.

Infinite
loop to
read

unknown
number

of entries
in file.

Break out of the
loop when we find
the end of the file.

EOF is defined
in stdio.h.

Here we've created an infinite loop on purpose. The
loop will continue repeating until we use �break� to
break out of it.

In this case, we check to see when scanf returns the
value EOF (�End Of File�). Note that scanf will only
return EOF the next time it's called after reading the
last line. In other words, the scanf statement above
will be called one more time than the number of lines
in the file.

Scanf returns status = # of fields converted or EOF. In
general, we could check to make sure the returned
value equals the number of values we expect to see.
In this case if (status !=5) we have a problem.

 6

Part 2: More on Functions

These are electrical plugs and receptacles defined by
a standard called �NEMA�. The idea behind this
standard is that it shouldn't be physically possible to
plug the wrong kind of device into the wrong kind of
receptacle.

This is the way your function prototypes work. They
define the number and type of the functions
arguments, and the type of data it returns. The C
ompiler can then check each time you use the
function to make sure you're plugging in the right
type and number of variables, and you're capturing
the functions return value in an appropriate way.

 7

Review of Function Interfaces:

type func_name (type1 var1, type2 var2, ...);
General form for a function prototype:

Type of data
returned

Function
Name

Type of 1st
argument

1st argument Any number of arguments,
but only one return value.

printf(“Distance = %lf”, dist(x2,x1));

void howLong(int hours, int mins, int secs){
 printf(“This class is %d seconds long\n”,

 hours*3600 + mins*60 + secs);
}

A function may be used just like
a variable of its return type.

A function may return nothing
as it does here (type = void).

 8

int main() {
 int hours = 1;
 int mins = 15;
 int secs = 0;
 howLong(hours, mins, secs);
 return 0;
}

void howLong(int hours, int mins, int secs){
 printf(“This class is %d seconds long\n”,

 hours*3600 + mins*60 + secs);
 hours = 0;
 mins = 0;
}

The function's arguments (or
�parameters�) are copied to local
variables within the function.

These statements have no effect
on the variables in �main�.

Local variables are completely isolated from variables in the calling
function. They may be changed without affecting the original values.

How C Passes Variables to Functions:

C always copies parameter data from the calling
function to the target function.

The target function has an independent copy of the
data and can never change the value of a variable in
the calling function.

Using an alternate syntax, C++ can operate on the
original variable in a function. But we will instead
concentrate on a workaround to the above restriction
available in both C/C++

To understand this, we must first discuss pointers.

 9

Part 3: Pointers

Pointers are a very powerful and dangerous feature of
the C language. To understand them, we'll first need
to talk some more about how variables are stored in
memory.

 10

Another Look at Variable Storage:

velocity

x

number

a

y

01100011

1 Byte

double
float

float
int

char

000

008

012

016
017

Bits

Ad
dr

es
se

s

� The values of variables are
stored in memory.

� Different types of variable take
up different amounts of memory.

� The values of variables are
stored as ones and zeros (bits)
arranged in groups of eight
(bytes).

How does the computer find a
particular variable's data in
memory? Each variable has an
address, expressed as the
number of bytes from some
starting location.

 11

#include <stdio.h>
int main () {
 int number = 123456;

 printf("Size of memory storage: %d\n",
 sizeof(number));

 printf("Memory address of storage: %p\n",
 &number);

}

Viewing Memory Addresses:
As we've seen before, you can use the �sizeof� operator to find out how
much storage space a variable uses in memory.
You can use the �&� (�address of�) operator to see the memory address
of a particular variable's storage area:

The �%p� format descriptor can be
used for printing memory addresses.

Size of memory storage: 4
Memory address of storage: 0xbfd2ab5c

As we'll see �p� stands for �pointer�.

We usually express memory addresses in the form of a
hexadecimal (base 16) number. This is a natural,
compact way of writing binary numbers. 16 is just
2^4, so each 8-bit byte can be represented by two
hexadecimal digits, like �5c�.

The memory address will be different every time you
run the program. The program looks around for a
chunk of available memory when it starts, and in
general the chunk will be in a different place each
time.

 12

Addresses of Local Variables:
#include <stdio.h>
int test(int n);
int main () {
 int number = 123456;

 printf("Memory address of main storage: %p\n",
 &number);

 test(number);
}
int test(int number) {
 printf("Memory address of test storage: %p\n",
 &number);
}

Memory address of main storage: 0xbfe82bbc
Memory address of test storage: 0xbfe82ba0

Now that we know how to look at memory addresses,
we can confirm that the variable �number� in main
really is different from the variable �number� in the
function �test�. The two variables live in different
locations in memory.

 13

int
int

.
.
.

0xbfe82bbc

0xbfe82ba0

number,
in �main�

number,
in �test�

Storage of Local Variables:
The variables inside a function, even those passed to function when we
invoke it, are local to that function. A variable named �number� in the
function �test� isn't the same as the variable named �number� in �main�.

When the function is
invoked, the value in
number in �main� is copied
into a new storage area for
holding the �test� function's
variable called number.

test(number);

We say that, in C, function arguments are �passed by
value�.

 14

Pointers:
A pointer is a special kind of variable that holds the memory address
of another variable.

A pointer is defined by prefixing a variable name with an asterisk
(*), the indirection operator:

int main() {
 int number = 5;
 int *nptr;

 nptr = &number;

 return(0);
}

An int variable

A �pointer to int�
variable

Use the �address of� (&)
operator to get the address
of number and store it in
nptr.

Note: the * is NOT part of the pointer's name. And, of
course, don't confuse this with multiplication.

 15

double
.
.
.

double *double *

0xbfe82bdd

0xbfe82bdd

3.1415 number

nptr

int main() {
 double number = 3.1415;
 double *nptr;

 nptr = &number;

 return(0);
}

How Pointers are Stored in Memory:

In this example, the �double�
variable number stores the value
3.1415. The �pointer to double�
variable nptr stores the address
of number.

Notice that the memory storage for a �double� variable
is a different size than the storage area for a �pointer
to double� (double *). Pointers are usually stored in
4 bytes (on 32-bit computers) or 8 bytes (on 64-bit
computers).

 16

Viewing the Data at a Given Memory Location:

int main() {
 double number = 3.1415;
 double *nptr;

 nptr = &number;

printf(“The value is %lf\n”,
 *nptr);

 return(0);
}

The value is 3.1415

You can get the data stored at a given memory location by using
the �*� (�indirection�) operator:

Since nptr is a �pointer
to double�, the result will
be treated as �double�
data.

The compiler interprets the indirection (or
�dereferencing�) operator (*) as follows:

�use the data in nptr to find the memory address it
�points to� and fetch the data from that address�

 17

Changing the Data at a Given Memory Location:

int main() {
 double number = 3.1415;
 double *nptr;

 nptr = &number;
 *nptr = 6.02;

printf(“number is %lf\n”,
 number);

 return(0);
}

We can also use the indirection operator on the left side of an
assignment statement, to set the value stored at a given memory
address:

number is 6.02

Here we change the value of
number indirectly, by sticking
a value into that variable's
memory address.

So, we can change a variable's value without explictly
referring to the variable by name. All we need to
know is its memory address.

 18

The Mystery of �scanf�:
When we use scanf (or fscanf) we
create some variables, and then
scanf sets the values of those
variables for us.

How can scanf modify the values
of the variables we've created, if C
always gives functions a copy of
each variable we pass?

int main () {
 int x,y;

 printf (“Enter x,y:”);
 scanf(“%d %d”,&x, &y);
}

The answer is �indirection�!

 19

int main () {
 int x,y;

 printf (“Enter x,y:”);
 scanf(“%d %d”,&x, &y);
}

How scanf Works:

int
int

0xbfe82bbc

0xbfe82bc0

x

y

&x and &y are the memory
addresses of the variables x and
y. These addresses are copied
into variables inside scanf.

After scanf reads data from the
keyboard, it sticks that data into
the memory addresses given by
&x and &y.

If scanf didn't know the addresses
of these variables, it couldn't
modify their contents.

We stated earlier that C copies data from the calling
function to local variables when another function is
called.

This effectively makes it impossible for a function to
change the data associated with a variable in its
parameter list,

but...

if the data passed to a function is a pointer, we can
dereference the pointer and change the data in the
memory location referenced by that pointer

In this way we can change data in the main or calling
function by accessing it in an indirect manner

 20

Passing Pointers to Functions:

void getarea(float x, float y,
 float *aptr) {
 *aptr = x * y;
 return;
}

int main() {
 float x = 2;
 float y = 5;
 float area;
 getarea(x, y, &area);
 printf(“the area = %f units\n”,
 area);
 return 0;
}

You can use indirection in your own functions. Here's an example:
Here we pass getarea
the address of the
variable area.

Here we tell our function
to expect a pointer
containing the address
of a �float�.

Deposit the calculated
area into memory at the
address of variable area
in �main�.

Notice that �getarea� doesn't have a return value. Instead of
returning a value, as we've previously done with functions,
�getarea� uses indirection to write its results into a specified
memory location, where we can use them later.

What's the advantage of this?

When a function gives its results through return, it can only give
us one value. But, with this indirection technique, a function
can send back as many different pieces of data as it wants to.

Consider the case of a function that calculates cross-products of
three-dimensional vectors. The function would need to send
back three values (the x,y, and z components of the cross-
product vector). We can only give back one value with return,
but we could pass the function the addresses of three
variables, and have the function drop the components of the
vector into those memory locations.

 21

Returning Multiple Values:

void c_and_a(float r,
 float *a,
 float *c) {
 *a = PI*r*r;
 *c = 2*PI*r;
}

This is the final part of the
�mystery of scanf�: scanf needs to
use indirection because it has to
give back more than one value.
Typically, we give scanf a list of
variable addresses, and it fills the
variables up, using data read from
the keyboard.
With indirection, the function can
give back any number of values.
Consider the following function
that returns area and
circumference simultaneously:

There are actually a couple of other scanf mysteries
that we'll look at later:

� Why don't we use an ampersand when we give scanf
a character string?

� How can scanf (and printf) have a variable number of
arguments?

 22

Pointer Errors: Null (zero) Pointers:

int main () {
double x;

printf(“Enter the value for x:”);
scanf(“%lf”, x);

}
Segmentation fault

If we accidentally leave off an ampersand when calling scanf, we'll
usually get a segmentation fault error.

Note missing
ampersand!

The value in x is probably zero, so scanf interprets this to mean that it
should stick the value of x into the memory address �0x00000000�.

This is a low-lying part of memory that belongs to the operating system,
and your program doesn't have permission to write there. That's what
the �segmentation fault� error is telling you.

If we give scanf an arbitrary value as a memory
location, it's a good bet that this isn't a section of
memory that your program is allowed to write into.
This will generate a segmentation fault.

 23

int main () {
 int number = 4;
 double *nptr;

 nptr=(double *)&number;
 printf (“%lf\n”, *nptr);

}

int i = 4; 00000100 00000000
00000000 00000000

float f = 4; 00000000 00000000
10000000 01000000

char c = '4'; 00110100

Pointer Errors: Mis-casting:
int main () {
 int number = 4;
 double *nptr;

 nptr = &number;
 printf (“%lf\n”, *nptr);

}
error: cannot convert �int *� to
�double *� in assignment

0.00000000

Remember that different
variable types have very
different representations in
memory. Since each
pointer variable has a type,
the compiler tries to keep
you from pointing to the
wrong type of data.
Override this at your peril.

 25

Part 4: RecursionPart 4: Recursion

Imagine you're sitting in a barber shop with one mirror
in front of you and another behind you. In the mirror
in front of you, you see the mirror behind, and
contained within it you see a smaller image of the
mirror in front. In other words, the image you see in
front of you depends upon...the image you see in
front of you!

This is called recursion, and in C, functions can do it.

 26

Factorials:

N! = N*(N-1)!

The value of N factorial can be written like this:

 N! = N*(N-1)*(N-2)*(N-3)*(N-4)...

(N-1)! = (N-1)*(N-2)*(N-3)*(N-4)...

But notice that this is just
N times (N-1) factorial:

So, we could define the factorial function more compactly by writing it
in terms of itself, like this:

In the bottom line, we've defined the factorial operation
recursively (i.e., in terms of itself). This is a nice
compact form, but what use is it?

As it turns out, C allows functions to refer to
themselves. Because of that, we can use the
definition above to write a very compact �factorial�
function in C, using recursion.

 27

C supports the construction of recursive functions. Recursive functions
are defined in terms of themselves. Notice that the factorial function,
below (�fact�) actually uses itself:

Recursive Functions:

long fact(int n) {
if (n<=1)

 return (long)1;
else
 return (long)n * fact(n-1);

}

Terminating
condition

Recursive
function call

Recursive algorithms are typically very short and are used when simple
relationships may be defined between steps in a calculation or a data
manipulation strategy.

All recursive functions must have a terminating condition, so the
recursion has a limit.

Why �<=�? Because 0! is defined to be 1. Someday
we may want to use this function to give us the
factorial of zero.

We use �long� integers here because factorials can get
very large.

Without a terminating condition, the recursion would
continue to go deeper and deeper, infinitely, until all
available resources were exhausted and the
program crashed.

Try working through this function by hand, starting with
fact(3).

 28

Part 5: Static Variables

 29

int main () {
 test();
 test();
 test();
}
void test () {
 int a=0;
 a++;
 printf ("a = %d\n",a);
}

Ephemeral Local Variables:

a = 1
a = 1
a = 1

By default, variables declared in
function blocks are ephemeral.
They are created when the function
is entered, and destroyed when the
function is exited.

No information about
'a' is saved between
function calls. 'a' is
recreated, starts out
fresh, each time test()
is called.

 30

Static Variables:

int main () {
 test();
 test();
 test();
}
void test () {
 static int a=0;
 a++;
 printf ("a = %d\n",a);
} a = 1

a = 2
a = 3

Variables declared static in
function blocks are preserved
between function calls. They are
created at program startup and
defined for the duration of the
program.

Information about
'a' saved between
function calls.

The only change from the previous slide is that now
we've added the word �static�.

 31

Keeping History Between Function Calls:

double randu(){
 static int first = 1;
 if (first == 1) {
 srand(time(NULL));
 first = 0;
 }
 return (double)rand()/
 (double)RAND_MAX;
}

Static variable to tell us
whether this is the first
time we've called this
function. Initially, it's set
to 1.

The first time we call
�randu�, we invoke
srand to initialize the
random-number
generator.

In subsequent calls to
�randu�, the variable
first will be zero, so we
won't call srand again.

Here's a common use for static variables. We check to
see if we've already called �srand�. If not, we call it.

By doing it this way, we avoid the possibility of
forgetting to call srand in our main function.

 32

Other Uses for Static Variables:

� keep track of how many times a function is
called,

� keep track of previous parameters sent to a
function,

� keep track of a previous result of function.

 33

Part 6: Random Numbers

Early on, students of probability and statistics were
treated like second-class citizens by other
mathematicians. There was a widespread belief that
these subjects were only relevant to games, and that
games weren't serious mathematics.

Now we know that random numbers, and the study of
them through probability and statistics, can be highly
valuable tools. Let's look at one example.

 34

X1

f(x,y)

X2
Y1

Y2

Integrating Over an Arbitrary Area:
Say we have some horrible function in two dimensions, like the one
shown below, and we want to calculate the area enclosed within the
curve.

We could arrive at a very rough estimate of the area like this:

Define a box as shown, where
Y2 >= Max Y value of f(x,y) in the range X1 <= x <= X2
Y1 <= Min Y value of f(x,y) in the range Y1 <= y <= Y2

Area of the box = (X2-X1)*(Y2-Y1) > Area enclosed by the function

Area of box

Obviously, the area of the box is a poor estimate of the
area of the whale-shaped blue region. How can we
improve our estimate?

 35

f(x,y)

X2
Y1

Y2

Using Random Numbers to Estimate the Area:

n_in = 0;
for (i=0 ; i< num_trials <i++) {
 x = (double)rand()/RAND_MAX * (X2-X1) + X1;
 y = (double)rand()/RAND_MAX * (Y2-Y1) + Y1;
 if (in_fcn(x, y)) n_in ++;
}

area = (X2-X1)*(Y2-Y1) * n_in / num_trials;

X1

If we generate random points
within the box, we can use them
to get a better estimate of the
area:

Points inside shape
Total pointsr =

A
shape

 � A
box

 * r

As we generate more and more points we asymptotically approach the
exact answer.

One way to estimate the uncertainty of your Monte-
Carlo-estimated area is to run your calculation
multiple times, then use the average of your trials as
your answer and use the standard deviation of the
mean as an estimate of your uncertainty.

If efficiency is not an issue, the MC technique is
attractive, because of its simplicity.

 37

� The Monte Carlo method can be trivially extended to higher
dimensional problems.

� If it is at least possible to determine whether something is inside or
outside of your area you can do the integral, even if the shape is
beyond hope of integrating analytically.

� In general, it's more efficient to use other techniques to calculate
integrals of 1D or 2D functions. But, for higher dimensional integrals,
this technique is quite efficient compared to others.

Advantages of Monte Carlo Integration:

Consider the case of an 11-dimensional integral in
String Theory. This might be utterly impossible to
solve analytically, but by generating thousands of
sets of 11 coordinate values, we could estimate its
value by Monte Carlo methods.

 38
C

Part 7: What We Know About C Now

Now for a quick review of what we've learned so far
about the C language.

 39

Variables:

� Have types.

� Commonly-used types are:
 int, for integers (1,2,3,...),
 double, for floating-point numbers (3.14, 6.02, 9.8),
 char, for characters and character strings ('a','Hello World!')

� Are usually defined at top of functions.

� May be pointers that hold the address of another variable.

 40

Input/Output:

� Use printf to write to the screen.
� Requires #include <stdio.h>
� Uses format descriptors for variables.
� Commonly-used format descriptors are:
� %d, for int
� %lf, for double
� %s, for character strings

� You can use �\n� to insert carriage returns.

� Use scanf to read from the keyboard.
� Use an & in front of variables, except for character strings.

 41

Files:

� Referred to by �file pointers�: FILE *infile;

� Open files with fopen:
� Pick �r� for reading, �w� for writing.

� Write to file with fprintf.

� Read from file with fscanf.

� Close file with fclose.

 42

Loops:

� for loops:
� Repeat something a fixed number of times.
� Should use integers for counters.

� while loops:
� Keep repeating as long as a given statement is true.
� Do the test before starting, so number of repeats may be

zero.

� do loops:
� Keep repeating as long as a given statement is true.
� Do the test after the first pass, so number of repeats is

always at least one.

 43

Conditionals:

� if statements:
� Only do something if a given statement is true.

� if/else statements:
� Pick between two options, depending on whether a given

statement is true or false.

� if/else if/else statements:
� Choose based on the first true expression you find.

� switch statements:
� Choose between several options, based on the value of an

integer or a character.

 44

Functions:

� Always have at least one, called �main�.

� Functions return one value to the caller.

� Functions take arguments.

� Functions have a syntax defined by a prototype statement.

 45

Next Time:
� Arrays
� Making your own libraries
� Pointers to functions, etc.

This week's Lab:This week's Lab:

Prelab preparation for this weekPrelab preparation for this week

Review examples of passing data to functions via Review examples of passing data to functions via
pointers in text/notespointers in text/notes

 Review the �Whale� example Review the �Whale� example Brooks Ch. 1, Ch. 2 sections 1-2.2

 46

The End

Thanks!

