

Physics 2660
Lecture 5: C � Part 4

Today
� Estimating Errors in Monte Carlo Results
� Arrays
� Reusing code
� Passing arguments to main()
� Pointers to functions
� Basic numerical integration / differentiation techniques

Part 1: Estimating ErrorsPart 1: Estimating Errors

Let's take another look at Monte Carlo integration,
focusing on the �Whale� example we saw in the last
lecture.

The Whale Example:

as M � �m/M A
whale

/A
box

m = Number of points in whale shape
M = Total number of points

A
whale

 � A
box
*m/M

If we repeat this experiment with a different set of random points,
our resulting estimate of the whale's area will be slightly different.
By coming up with several estimates of the area, and looking at
how much variation they display, we can get an idea of how
accurate our estimate is.

m
M

We call this the �sample mean� because our
experiments are a small sample of the infinite
number of possible experiments that we could do. If
we could do an infinite number of experiments, we'd
find that the sample mean would approach an
underlying value called the �population mean�.

Note that there are other ways we could choose to
quantify a �typical� deviation. For example, we could
look at the average absolute value of d.

The standard deviation has some nice properties,
though. In particular, it has a natural relationship to
the gaussian (normal) distribution. For example, 2�
is the distance between the �points of inflection� (the
place where the curvature goes from positive to
negative) of the gaussian distribution.

More importantly, the sample standard deviation is
usually the best estimate of the standard deviation of
the parent population.

And it's a good bet that the Ai values will be
distributed approximately like a gaussian. Why is
this? Because of the �Central Limit Theorem�, which
says that any linear sum of random variables tends
toward a gaussian, no matter what the distribution of
the individual variables looks like.

The Central Limit Theorem is so important that it's
called the �second fundamental theorem of
probability�. (The first is the Law of Large Numbers.)
 For more information, see:
http://en.wikipedia.org/wiki/Central_limit_theorem

Note that this means you can construct a pretty good
gaussian distribution just by adding together
sufficiently many numbers pulled from a uniform
distribution, without using things like the Box-Muller
transform.

Dividing by N-1 instead of N is known as �Bessel's Correction�. See the
following Wikipedia article for more information:
http://en.wikipedia.org/wiki/Bessel%27s_correction

You can see the problem intuitively by considering the case where you
only have one measurement, A

1
. Since this measurement will probably

be different from the true value, A
whale

, it makes perfect sense to

calculate � from it. We would just arrive at � = |A1-A
whale

|.

If we use A in place of A
whale

, we run into trouble, though. If we only

have one point, then A = A
1
, so A

1
-A will always be zero, giving us zero

as the estimate of our standard deviation. This isn't very realistic. If we
divide by N-1 instead of N, then our value for s becomes �undefined�,
instead (0/0). This is a more reasonable approximation of the truth.

Of course, for large values of N, there's not much difference between N
and N-1.

If we didn't do it this way, we'd have to loop through all of
the data once, to calculate the average, and then loop
through it again to use the average value in calculating s^2.

Note, however, that there's some evidence that the method
you choose may have a noticeable effect on the accuracy of
your result. See the following article for an interesting
discussion of this:
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviati
on/

Standard Error of the Mean:

We said that our best guess of the true value, A
whale

, is the mean of our

sample values, A. Now let's get back to the problem of quantifying
just how good that guess is. Earlier, we defined the mean as:

If we know the standard deviations of the A
i
 values, we can use them

to calculate the standard deviation of the mean, through the regular
propagation of errors process:

Where we treat A as a function of the variables A
1
, A

2
, A

3
...A

N
.

Why is A our best guess for the value of A
whale

? The

answer lies in something called the �Law of Large
Numbers�, which says that "the average of the
results obtained from a large number of trials should
be close to the expected value, and will tend to
become closer as more trials are performed. � For
more information and proofs, see this Wikipedia
article:
http://en.wikipedia.org/wiki/Law_of_large_numbers

How does propagation of errors work? See the
following for more information about that:
http://en.wikipedia.org/wiki/Propagation_of_uncertain
ty

To know �, we would have to know the true value of
the area (A

whale
).

What we find is that only the total number of points
matters, added up over all experiments. This is what
you'd expect. If we, for example, decided to
subdivide the points in each experiment into �1a�,
�1b�, �2a�, �2b�,etc., so that we had twice as many
experiments, we wouldn't expect that artificial
division to affect our final result. The data is still the
same, we've just categorized it differently.

If you're uncomfortable with m
i
 being either zero or

one, another way to look at it is to define p

as the

probability that a given point will land inside the

whale, with p = n/N.

Standard Deviation when M=1:

So, if we now define the mean value of A like
this:

And (by analogy with what we've done before) the standard
deviation of m like this:

We arrive at the following expression for the standard error of the
mean, in the case where we have only one experiment with many
points:

Click Here for a Demonstration.

The demonstration shows the mean and standard
error of the mean being continuously re-calculated
as we add more and more points. As you can see, it
gets narrower as N increases, and the peak settles
into a stable position.

Part 2: ArraysPart 2: Arrays

We often need to carry around sets of related data:
the coordinates of a vector, for example. Until now,
we've had no way to tell the computer that a group of
variables was related.

Arrays let us do that.

Doing it this way will work, but it's fraught with peril.
You have to keep track of the subscripts yourself,
and it's really easy for typos to creep in.

Defining Vectors as Arrays:

#include <stdio.h>
int main () {
 double x1[3] = {1.0,2.0,3.0};
 double x2[3] = {4.0,5.0,6.0};
 double sum[3], dot=0;
 int i;

 for (i=0;i<3;i++) {
 dot += x1[i] * x2[i];
 }
 printf ("Dot-product: %lf\n",dot);

 for (i=0;i<3;i++) {
 sum[i] = x1[i] + x2[i];
 }
 printf ("Sum: %lf %lf %lf\n",
 sum[0],sum[1],sum[2]);

 return(0);
}

Define each vector as an
array of three doubles.

Loop through all of the
elements of the array.

Note that array
indices go from zero
to N-1, where N is the
size of the array.

Here's a better way:

Note how arrays can be
initialized.

With vectors, we can tie the components of the
vector together, and carry the whole vector around in
the program. The computer keeps track of the
components, and makes sure they're in the right
places.

Defining Arrays:

int population[50];
char name[25];
double x1[3] = {1.0,2.0,3.0};

� The elements of an array can be of any type (but all elements of a
given array must be of the same type).

� When defining an array, the number in square brackets says how
many elements are in the array.

� Arrays can optionally be initialized when they're defined.

Arrays take up memory. It's easy to write �double a[1000]�,
but remember that this takes as much memory as a
thousand single variables. Keep this in mind when defining
large arrays.

Think of indices as the subscripts we use in
mathematics when we write expressions like X

i
.

Arrays let us bundle together related data, like the
elements of a vector or the characters in a text
string.

It's important to remember that each element of an
array takes up just as much memory as a separate
variable of that type. So, if we define a large array
with thousands of elements, we may run into the
limits of the computer's memory.

value = x1[i] + x2[i];

x[i] = M_PI*area;

� Array elements can be referred to by their indices.

� The index must be an integer.

� The index uniquely identifies a single array element.

Working with Arrays:

It's important to remember that the values of array indices
start with zero, and that they end at N-1.

for (i=0;i<3;i++) {
 dot += x1[i] * x2[i];
}

x[2]

in
t

000

008

012

016
A

d
d
re

s
s
e
s

in
t

in
t

in
t

in
t

004

x[1]

x[0]

x[4]

x[3]

int x[5];

Array Storage:

The elements of an
array are stored in
contiguous memory
locations.

When you give the program an array index, the
program multipies the index times the size of each
element to find the address where a particular
element lives.

Array Boundary Checking:

Unlike some languages, C doesn't check your
array indices to make sure they're within the
bounds of the array.

For example: int x[3];

x[128] = 100;
x[2]

in
t

in
t

in
t

x[1]

x[0]

...

x[128]

in
t

What data is stored in this location?
Whatever it is, it's not part of the
array �x�, and it's probably not even
owned by this program.

This is the most common source of run-time
errors when using arrays.

The compiler will not check for these errors,
and they won't become apparent until your
program generates a �segmentation fault� error.

Remember: C computes the location (memory
address) of an array element by multiplying the index
times the size of each element.

Other Array Errors:

double days[7];
double months[12];

days[7] = 3.14;

What's wrong with the following code?:

...
...

days[5]

days[6]

months[0]

d
a

y
s

m
o

n
th

s

3.14

The index of �days� goes from 0 to 6.

If the arrays �days� and �months� are
stored next to each other in memory,
it's possible that the value 3.14 gets
written to the first element of the
months array!

In this case, the operating system
doesn't care, because the program
has the right to modify that memory.

Overwriting array boundaries can cause very confusing
problems in your programs:

Segmentation faults are often the easiest to deal with if the
fault is immediate on the access to the undefined array
location

Overwriting unrelated data may allow your program to run
without crashing, but your results may be bizarre

Alternatively, corrupt data may cause your program to crash in
code that is far removed from where the array boundary error
initially occurred.

(Think about a program w/ millions of lines of code. Ouch!)

Some tools are available to help debug these specific issues,
but that's beyond our scope. Always try to write code carefully
up front!

Passing arrays to functions:

void print_stuff(float a[], int size);

int main(){
 const int max = 20;
 float an_array[max];
 print_stuff(an_array,max);
}

void print_stuff(float a[], int size)
 int i;
 for (i=0 ; i<size ; i++)

printf (“%f\n”, a[i]);
}

When passing an array, we
don't specify the size in the
square brackets.

But we do need to tell the function
what the size is. Arrays in C don't
carry around any information
about their sizes.

We give the function the
name of the array, and the
size.

Inside the function, we can
use the array just like we'd
use it in �main�.

As we'll see �a []� is just equivalent to a pointer.

Multidimensional Arrays:

int main(){
 const int nrow = 20;
 const int ncol = 20;
 double matrix[nrow][ncol];

 int i,j;
 for (i=0; i<nrow; i++) {
 for (j=0; j<ncol; j++) {
 matrix[i][j] =
 (double)i * (double)j;
 }
 }

A 2-dimensional array may be defined by specifying two indices:

Defines a 20x20
array.

Higher-dimensional arrays
can be defined by just adding
more indices.

But again, remember that arrays take up just as
much memory as the same number of individual
variables. If you define a 100x100 array, you've
taken up as much memory as 10,000 single
variables. You can quickly run into memory limits
with multi-dimensional arrays.

Character Strings as Arrays:

We now see that we've been using arrays all along, whenever we
define a character string variable. Character strings in C are just
arrays of characters:

#include <stdio.h>

int main () {
 char string1[20] = "this is a test.";
 char string2[20] = {'t','h','i','s',' ',
 'i','s',' ','a',' ',
 't','e','s','t','.'};

 printf ("%s\n",string1);
 printf ("%s\n",string2);
}

As you can see, strings can either be initialized by giving
individual characters in curly brackets, as you'd initialize any other
type of array, or you can use the more natural way of doing it: Just
write the string and enclose it in quotes.

Arrays and Pointers:

In C, when you give the name of an array,
it's equivalent to a pointer. For example,
consider the following code:

void printit(double a[],int s);
int main() {
 double a[50];
 double *aptr;
...
 printit (a,50);
 printit (aptr, 50);
}

The prototype for �printit� could just as well
have said �double *a� instead of �a[]�. The
two are equivalent.

This explains another of the mysteries of scanf: Why don't we need to
put an ampersand in front of the names of character strings? It's
because these variables are already pointers.

The name of an array variable is treated as a pointer
pointing to the address of the beginning of the array.

C supports a simple interface for providing data to your program via
the command line.

If a program needs few parameters to control its behavior, this is a
nice alternative to using scanf or reading data files to get options.

Passing Arguments to �main�:

When you run a program like cp, you are passing arguments at the
command line. For example:

cp myfile.txt yourfile.txt

Command Parameter 1 Parameter 2

If we do so, the operating system will use these arguments to pass
information from the command line to our program.

argc is the �argument count�, the number of arguments the operating
system is giving us, and argv is the �argument vector�, which is an
array of character strings.

This may seem confusing at first, but we'll see how it works through
examples.

int main()

The �argc� and �argv� Parameters:

int main(int argc, char *argv[])

Until now, we've begun our programs like this:

But, just like other functions, the �main� function can take arguments.
In particular, we could begin our program like this:

int main(int argc, char *argv[]){
 int i;
 for (i=0; i<argc; i++)
 printf(“%d %s\n”, i, argv[i]);

 return 0;
}

Using �argc� and �argv�:

Here's an example showing how argc and argv
can be used:

argc tells you how many arguments are passed into the program.

All arguments are read into memory as text strings (even if they are
numbers). These strings are accessed via argv.

int main(int argc, char *argv[]){
 int i;
 for (i=0; i<argc; i++)

 printf(“%d %s\n”, i, argv[i]);
 return 0;
}

Argument Examples:

Program called �args�:

args

0 args

args stuff

0 args
1 stuff

args stuff a

0 args
1 stuff
2 a

args stuff a 3.14

0 args
1 stuff
2 a
3 3.14

The first argument
is always the
program name. Remember that this is a

string, not a number.

Getting Numbers from argv:

#include <stdlib.h>
int main(int argc, char *argv[]){
 int i;
 double f;
 if (argc < 3) return 1;
 i = atoi(argv[1]);
 f = atof(argv[2]);
}

Stdlib.h offers functions that can translate strings into numbers:

Not enough
arguments?

Convert text
to integer.

Convert text
to double.

Also available: atol (arg to long), atoff (arg to float). Feel free to
complain about the lousy names.

There's no point in reinventing the same
programming solution over and over again.

For example, deep down the printf function is horribly
complicated, yet once it is coded, you simply have to
remember a fairly simple interface to reuse the
function again and again.

Ditto for things like sin(x), sqrt(x), etc... Do we really
want to rewrite the code for these functions?

Perhaps as a challenge... but when you get down to
doing real work, there's no point in repeating what
you or someone else has already completed.

Using #include to Re-use Code:

double sqtrn(double x) {
double guess = x/2.0;
while (fabs(guess*guess-x)>1e-6)

 guess = (guess + x/guess)/2;
return guess;

}

File �sqrtn.cpp�:

#include <stdio.h>
#include <math.h>
#include “sqrtn.cpp”
int main(){
 double x;
 printf(“enter a number\n”);
 scanf(“%lf”, &x);
 printf(“sqrt(%lf) = %lf\n”, x,
 sqrtn(x));
}

File �main.cpp�:

Note the use of quotes
around the file name. Angle
brackets (<>) are reserved
for files in �standard� system
directories. In general your
personal includes must give
the full directory path to the
file, or be in the current
directory.

The disadvantage of this approach is that every time
you compile a program using your function sqrtn you
must also compile the code for sqrtn.

If sqrtn is a large function (or if you include many
such functions), this can unnecessarily increase the
time it takes to build your programs.

Creating Object Files:

#include <math.h>
double sqtrn(double x) {

double guess = x/2.0;
while (fabs(guess*guess-x)>1e-6)

 guess = (guess + x/guess)/2;
return guess;

}

File �sqrtn.cpp�:

An object file is compiled code that hasn't been fully processed
into a program. The above code isn't a complete program.

We can compile the code into an object module as follows, using
the �-c� flag of g++:

g++ -O -Wall -c sqrtn.cpp Creates the file sqrtn.o.

sqrtn.o contains the function's code translated into CPU
instructions. The -c flag causes g++ to stop after compiling, without
continuing to the �linking� step that produces a runnable program.

We'll talk later about how object files can be packed
into �libraries�.

Linking Object Files with Your Program:

double sqtrn(double x);

File �sqrtn.hpp�:

#include <stdio.h>
#include <math.h>
#include “sqrtn.hpp”
int main(){
 double x;
 printf(“enter a number\n”);
 scanf(“%lf”, &x);
 printf(“sqrt(%lf) = %lf\n”, x,
 sqrtn(x));
}

File �main.cpp�: We can then compile our main
program by typing:

 g++ -o main main.cpp sqrtn.o

If we have a pre-compiled object file, we only need to #include a
header file containing the prototype for the function:

The disadvantage of this approach is that every time
you compile a program using your function sqrtn you
must also compile the code for sqrtn.

If sqrtn is a large function (or if you include many
such functions), this can unnecessarily increase the
time it takes to build your programs.

The disadvantage of object files (and libraries) is that
they're not portable from one type of computer to
another. I could conceivably take a cpp file from
Linux to Windows to OS X and compile and run it in
each place. If I copy an object file from Linux to
Windows, it will be useless there.

Part 5: Pointers to Functions

Remember the quartic Mandelbrot set problem? We
took an example that used the Z^2 version of the set,
and we modified it by changing the iteration function
to use Z^4 instead. Most of the rest of the program
stayed the same. Wouldn't it have been nice to have
a �generate_mandelbrot� function that just took a
function as an argument and then did the right thing?

Well, as it turns out, you can do that kind of thing in
C by using pointers to functions.

0x1234abcd

d
o
u
b
le

 s
q

rtn
(d

o
u
b
le

 a
)

Functions in Memory:

Like variables, each function in your program is
stored in memory. The function's memory location
holds the machine-code instructions that implement
the function.

Just as you can use pointers to refer to the location
of a variable in memory, you can use pointers to
functions to refer to the address of a function.

Function pointers allow you to pass
functionality around your program
just like data.

#include <stdio.h>
#include “sqrtn.hpp”
void print_func(double (*f) (double x),
 double val);
int main(){
 double x;
 printf(“enter a number\n”);
 scanf(“%lf”, &x);
 print_func(sqrtn, x);
}

void print_func(double (*f) (double x), double val)
{
 printf("func(%lf) = %lf\n",val, f(val));
}

Function Pointer Example:

This argument is a
pointer to a function.

�print_func� takes a function
name as an argument.

Any function that returns a double and takes
a double argument can be plugged in here.

Now �f� points to the function we named.

print_func uses the name f to call the function

Q: What's going on?

A: f contains the location of the code for sqrtn in our
example.
f also �knows� that sqrtn returns a double, so f(val) is
interpreted as a double in the printf function.

Think of f(val) above as doing:
1) �run the code for a function at the address stored in f�
2) �pass that function a double� (val in this case)
3) �expect to receive a double returned from the function�

Anatomy of a Function Pointer:

void print_func(double (*f) (double x), double val);

In a function definition, a function pointer appears like this:

double (*f) (double x)

12 3

1. The name of the function pointer is �f�. The name must be
enclosed in parentheses.

2. This pointer points to a function that returns a �double�.

3. This pointer points to a function that takes one argument, of
type �double�.

Part 6: Numerical Integration

Now let's look at a place where we can make good
use of pointers to functions.

We've looked at Monte Carlo integration, but for
some problems there are easier, quicker ways to do
the integration.

�x

f(x)

X

1 2 3 4

A B

The Trapezoidal Rule:

Trapezoidal rule integration
offers a very simple method to
approximate the integral of a
one-dimensional function.

Consider the integral of f(x) over
the range A<= x <= B.

The area of each of the subdivisions: 1, 2, 3, 4 may be roughly
estimated as as the average of f(x) in this subdivision times the
width, �x, of the subdivision.

�x

f(x)

X

1 2 3 4

A B

By summing the rectangular
regions shown, we can estimate
the integral of f(x)....

In the limit that �x is small enough so that f(x) is essentially linear
over �x, this estimate is very accurate. If f(x) is linear over �x, then
the shape of each sub area is trapezoidal and our box covers the
same area.

=

The Trapezoidal Rule, cont'd:

�
A

B

f �x��

� x
f �A�� f �A�� x �

2
�� x

f �A�� x�� f � A�2� x�

2
�	�� x

f �A��n
1��� f �B�

2

�
A

B

f �x ��� x [f �A�� f �B�

2
��
i=1

n
1

f �A�i� x�]

�x

f(x)

X

1 2 3 4

A B

We can estimate the area by
summing the subdivisions.

The Trapezoidal Rule, cont'd:

#include <stdio.h>
#include <math.h>

double trap_rule(double (*f)(double),
double min, double max, int steps){

 int i;
 double sum=0;
 double dx=(max-min)/steps;
 for (i=1; i<steps ; i++) sum += f(min + i*dx);
 return dx * ((f(min)+f(max))/2 + sum);
}

int main() {
 printf(“Integral of sin(x) in [0:pi/2] = %f\n”,

 trap_rule(sin,0,M_PI/2,100);

 printf(“Integral of exp(x) in [0:10] = %f\n”,
 trap_rule(exp,0,10.,200);

}

Implementing the Trapezoid Rule:

We now can integrate any 1D function
we choose. Accuracy is controlled by
the steps parameter

Next Time:

This week's Lab:This week's Lab:

Prelab preparation for this weekPrelab preparation for this week

Review examples of passing data to functions via Review examples of passing data to functions via

pointers in text/notespointers in text/notes

 Review the �Whale� example Review the �Whale� example

Brooks Ch. 1, Ch. 2 sections
1-2.2

The End

Thanks!

