
  

 

  

Physics 2660
Lecture 5: C � Part 4

Today
� Estimating Errors in Monte Carlo Results
� Arrays
� Reusing code
� Passing arguments to main()
� Pointers to functions
� Basic numerical integration / differentiation techniques 



  

 

  

Part 1: Estimating ErrorsPart 1: Estimating Errors

Let's take another look at Monte Carlo integration, 
focusing on the �Whale� example we saw in the last 
lecture.



  

 

  

              

The Whale Example:

as M � �m/M A
whale

/A
box

m = Number of points in whale shape
M = Total number of points

A
whale  

  � A
box
*m/M

If we repeat this experiment with a different set of random points, 
our resulting estimate of the whale's area will be slightly different.   
By coming up with several estimates of the area, and looking at 
how much variation they display, we can get an idea of how 
accurate our estimate is.

m
M



  

 

We call this the �sample mean� because our 
experiments are a small sample of the infinite 
number of possible experiments that we could do.  If 
we could do an infinite number of experiments, we'd 
find that the sample mean would approach an 
underlying value called the �population mean�.



  

 

Note that there are other ways we could choose to 
quantify a �typical� deviation.  For example, we could 
look at the average absolute value of d.

The standard deviation has some nice properties, 
though.  In particular, it has a natural relationship to 
the gaussian (normal) distribution.  For example, 2� 
is the distance between the �points of inflection� (the 
place where the curvature goes from positive to 
negative) of the gaussian distribution.

More importantly, the sample standard deviation is 
usually the best estimate of the standard deviation of 
the parent population.



  

 

And it's a good bet that the Ai values will be 
distributed approximately like a gaussian.  Why is 
this? Because of the �Central Limit Theorem�, which 
says that any linear sum of random variables tends 
toward a gaussian, no matter what the distribution of 
the individual variables looks like.

The Central Limit Theorem is so important that it's 
called the �second fundamental theorem of 
probability�.  (The first is the Law of Large Numbers.) 
 For more information, see:
http://en.wikipedia.org/wiki/Central_limit_theorem

Note that this means you can construct a pretty good 
gaussian distribution just by adding together 
sufficiently many numbers pulled from a uniform 
distribution, without using things like the Box-Muller 
transform.



  

 

 

 

Dividing by N-1 instead of N is known as �Bessel's Correction�.  See the 
following Wikipedia article for more information:
http://en.wikipedia.org/wiki/Bessel%27s_correction

You can see the problem intuitively by considering the case where you 
only have one measurement, A

1
.  Since this measurement will probably 

be different from the true value, A
whale

, it makes perfect sense to 

calculate � from it.  We would just arrive at � = |A1-A
whale

|.

If we use A in place of A
whale

, we run into trouble, though.  If we only 

have one point, then A = A
1
, so A

1
-A will always be zero, giving us zero 

as the estimate of our standard deviation.  This isn't very realistic.  If we 
divide by N-1 instead of N, then our value for s becomes �undefined�, 
instead (0/0).  This is a more reasonable approximation of the truth.

Of course, for large values of N, there's not much difference between N 
and N-1.



  

 

 

If we didn't do it this way, we'd have to loop through all of 
the data once, to calculate the average, and then loop 
through it again to use the average value in calculating s^2.

Note, however, that there's some evidence that the method 
you choose may have a noticeable effect on the accuracy of 
your result.  See the following article for an interesting 
discussion of this:
http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviati
on/



  

 

  

Standard Error of the Mean:

We said that our best guess of the true value, A
whale

, is the mean of our 

sample values, A.  Now let's get back to the problem of quantifying 
just how good that guess is.  Earlier, we defined the mean as:

If we know the standard deviations of the A
i
 values, we can use them 

to calculate the standard deviation of the mean, through the regular 
propagation of errors process:

Where we treat A as a function of the variables A
1
, A

2
, A

3
...A

N
.

Why is A our best guess for the value of A
whale

?  The 

answer lies in something called the �Law of Large 
Numbers�, which says that "the average of the 
results obtained from a large number of trials should 
be close to the expected value, and will tend to 
become closer as more trials are performed. �  For 
more information and proofs, see this Wikipedia 
article:
http://en.wikipedia.org/wiki/Law_of_large_numbers

How does propagation of errors work?  See the 
following for more information about that:
http://en.wikipedia.org/wiki/Propagation_of_uncertain
ty



  

 

To know �, we would have to know the true value of 
the area (A

whale
).



  

 

 



  

 

What we find is that only the total number of points 
matters, added up over all experiments.  This is what 
you'd expect.  If we, for example, decided to 
subdivide the points in each experiment into �1a�, 
�1b�, �2a�, �2b�,etc., so that we had twice as many 
experiments, we wouldn't expect that artificial 
division to affect our final result.  The data is still the 
same, we've just categorized it differently.



  

 

If you're uncomfortable with m
i
 being either zero or 

one, another way to look at it is to define p
 
as the 

probability that a given point will land inside the 

whale, with p = n/N.   



  

 

  

Standard Deviation when M=1:

So, if we now define the mean value of A like 
this:

And (by analogy with what we've done before) the standard 
deviation of m like this:

We arrive at the following expression for the standard error of the 
mean, in the case where we have only one experiment with many 
points:

Click Here for a Demonstration.

The demonstration shows the mean and standard 
error of the mean being continuously re-calculated 
as we add more and more points.  As you can see, it 
gets narrower as N increases, and the peak settles 
into a stable position.



  

 

  

Part 2: ArraysPart 2: Arrays

We often need to carry around sets of related data: 
the coordinates of a vector, for example.  Until now, 
we've had no way to tell the computer that a group of 
variables was related.

Arrays let us do that.



  

 

Doing it this way will work, but it's fraught with peril.  
You have to keep track of the subscripts yourself, 
and it's really easy for typos to creep in.



  

 

  

Defining Vectors as Arrays:

#include <stdio.h>
int main () {
  double x1[3] = {1.0,2.0,3.0};
  double x2[3] = {4.0,5.0,6.0};
  double sum[3], dot=0;
  int i;

  for (i=0;i<3;i++) {
    dot += x1[i] * x2[i];
  }
  printf ("Dot-product: %lf\n",dot);

  for (i=0;i<3;i++) {
    sum[i] = x1[i] + x2[i];
  }
  printf ("Sum: %lf %lf %lf\n",
           sum[0],sum[1],sum[2]);

  return(0);
}

Define each vector as an 
array of three doubles.

Loop through all of the 
elements of the array.

Note that array 
indices go from zero 
to N-1, where N is the 
size of the array.

Here's a better way:

Note how arrays can be 
initialized.

With vectors, we can tie the components of the 
vector together, and carry the whole vector around in 
the program.  The computer keeps track of the 
components, and makes sure they're in the right 
places.



  

 

  

Defining Arrays:

int population[50];
char name[25];
double x1[3] = {1.0,2.0,3.0};

� The elements of an array can be of any type (but all elements of a 
given array must be of the same type). 

� When defining an array, the number in square brackets says how 
many elements are in the array. 

� Arrays can optionally be initialized when they're defined.

Arrays take up memory.  It's easy to write �double a[1000]�, 
but remember that this takes as much memory as a 
thousand single variables.  Keep this in mind when defining 
large arrays.

Think of indices as the subscripts we use in 
mathematics when we write expressions like X

i
.

Arrays let us bundle together related data, like the 
elements of a vector or the characters in a text 
string.

It's important to remember that each element of an 
array takes up just as much memory as a separate 
variable of that type.  So, if we define a large array 
with thousands of elements, we may run into the 
limits of the computer's memory.



  

 

  

value = x1[i] + x2[i];

x[i] = M_PI*area;

� Array elements can be referred to by their indices.

� The index must be an integer.

� The index uniquely identifies a single array element.

Working with Arrays:

It's important to remember that the values of array indices 
start with zero, and that they end at N-1.

for (i=0;i<3;i++) {
    dot += x1[i] * x2[i];
}
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int x[5];

Array Storage:

The elements of an 
array are stored in 
contiguous memory 
locations.

When you give the program an array index, the 
program multipies the index times the size of each 
element to find the address where a particular 
element lives.



  

 

  

Array Boundary Checking:

Unlike some languages, C doesn't check your 
array indices to make sure they're within the 
bounds of the array.

For example: int x[3];

x[128] = 100; 
x[2]

in
t

in
t

in
t

x[1]

x[0]

...

x[128]

in
t

What data is stored in this location? 
Whatever it is, it's not part of the 
array �x�, and it's probably not even 
owned by this program.

This is the most common source of run-time 
errors when using arrays. 

The compiler will not check for these errors, 
and they won't become apparent until your 
program generates a �segmentation fault� error.

Remember: C computes the location (memory 
address) of an array element by multiplying the index 
times the size of each element. 



  

 

  

Other Array Errors:

double days[7];
double months[12];

days[7] = 3.14;

What's wrong with the following code?:

...
...

days[5]

days[6]

months[0]

d
a

y
s

m
o

n
th

s

3.14

The index of �days� goes from 0 to 6.

If the arrays �days� and �months� are 
stored next to each other in memory, 
it's possible that the value 3.14 gets 
written to the first element of the 
months array!  

In this case, the operating system 
doesn't care, because the program 
has the right to modify that memory.

Overwriting array boundaries can cause very confusing 
problems in your programs:

Segmentation faults are often the easiest to deal with if the 
fault is immediate on the access to the undefined array 
location

Overwriting unrelated data  may allow your program to run 
without crashing, but your results may be bizarre

Alternatively, corrupt data may cause your program to crash in 
code that is far removed from where the array boundary error 
initially occurred.   

(Think about a program w/ millions of lines of code.  Ouch!)

Some tools are available to help debug these specific issues, 
but that's beyond our scope.  Always try to write code carefully 
up front!



  

 

  

Passing arrays to functions:

void print_stuff(float a[], int size);

int main(){
  const int max = 20;
  float an_array[max];
  print_stuff(an_array,max); 
}

void print_stuff(float a[], int size)
  int i;
  for (i=0 ; i<size ; i++)

printf (“%f\n”, a[i]); 
}

When passing an array, we 
don't specify the size in the 
square brackets.

But we do need to tell the function 
what the size is.  Arrays in C don't 
carry around any information 
about their sizes.

We give the function the 
name of the array, and the 
size.

Inside the function, we can 
use the array just like we'd 
use it in �main�.

As we'll see �a [ ]� is just equivalent to a pointer.



  

 

  

Multidimensional Arrays:

int main(){
  const int nrow = 20;
  const int ncol = 20;
  double matrix[nrow][ncol];

  int i,j;
  for (i=0; i<nrow; i++) {
    for (j=0; j<ncol; j++) {
      matrix[i][j] = 
          (double)i * (double)j;
    }
  }

A 2-dimensional array may be defined by specifying two indices:

Defines a 20x20 
array.

Higher-dimensional arrays 
can be defined by just adding 
more indices.

But again, remember that arrays take up just as 
much memory as the same number of individual 
variables.  If you define a 100x100 array, you've 
taken up as much memory as 10,000 single 
variables.  You can quickly run into memory limits 
with multi-dimensional arrays.



  

 

  

Character Strings as Arrays:

We now see that we've been using arrays all along, whenever we 
define a character string variable.  Character strings in C are just 
arrays of characters:

#include <stdio.h>

int main () {
  char string1[20] = "this is a test.";
  char string2[20] = {'t','h','i','s',' ',
                      'i','s',' ','a',' ',
                      't','e','s','t','.'};

  printf ("%s\n",string1);
  printf ("%s\n",string2);
}

As you can see, strings can either be initialized by giving 
individual characters in curly brackets, as you'd initialize any other 
type of array, or you can use the more natural way of doing it: Just 
write the string and enclose it in quotes.



  

 

  

Arrays and Pointers:

In C, when you give the name of an array, 
it's equivalent to a pointer.  For example, 
consider the following code:

void printit(double a[],int s);
int main() {
  double a[50];
  double *aptr;
...
  printit (a,50);
  printit (aptr, 50);
}

The prototype for �printit� could just as well 
have said �double *a� instead of �a[ ]�.  The 
two are equivalent.

This explains another of the mysteries of scanf:  Why don't we need to 
put an ampersand in front of the names of character strings?  It's 
because these variables are already pointers.

The name of an array variable is treated as a pointer 
pointing to the address of the beginning of the array.



  

 



  

 

  

C supports a simple interface for providing data to your program via 
the command line.

If a program needs few parameters to control its behavior, this is a 
nice alternative to using scanf or reading data files to get options.

Passing Arguments to �main�:

When you run a program like cp, you are passing arguments at the 
command line.  For example:

cp  myfile.txt  yourfile.txt

Command Parameter 1 Parameter 2



  

 

  

If we do so, the operating system will use these arguments to pass 
information from the command line to our program.

argc is the �argument count�, the number of arguments the operating 
system is giving us, and argv is the �argument vector�, which is an 
array of character strings.

This may seem confusing at first, but we'll see how it works through 
examples.

int main()

The �argc� and �argv� Parameters:

int main( int argc, char *argv[ ] )

Until now, we've begun our programs like this:

But, just like other functions, the �main� function can take arguments.  
In particular, we could begin our program like this:



  

 

  

int main(int argc, char *argv[]){
  int i;
  for (i=0; i<argc; i++)
  printf(“%d  %s\n”, i, argv[i]);

  return 0;
}

Using �argc� and �argv�:

Here's an example showing how argc and argv 
can be used:

argc tells you how many arguments are passed into the program.  

All arguments are read into memory as text strings (even if they are 
numbers).  These strings are accessed via argv.



  

 

  

int main(int argc, char *argv[]){
  int i;
  for (i=0; i<argc; i++)

  printf(“%d  %s\n”, i, argv[i]);
  return 0;
}

Argument Examples:

Program called �args�:

args

0 args

args stuff

0 args
1 stuff

args stuff a  

0 args
1 stuff
2 a

args stuff a 3.14 

0 args
1 stuff
2 a
3 3.14

The first argument 
is always the 
program name. Remember that this is a 

string, not a number.



  

 

  

Getting Numbers from argv:

#include <stdlib.h>
int main(int argc, char *argv[]){
  int i;
  double f;
  if (argc < 3) return 1; 
  i = atoi(argv[1]);
  f = atof(argv[2]); 
}

Stdlib.h offers functions that can translate strings into numbers:

Not enough 
arguments?

Convert text 
to integer.

Convert text 
to double.

Also available: atol (arg to long), atoff (arg to float).  Feel free to 
complain about the lousy names.



  

 

There's no point in reinventing the same 
programming solution over and over again.  

For example, deep down the printf function is horribly 
complicated, yet once it is coded, you simply have to 
remember a fairly simple interface to reuse the 
function again and again.

Ditto for things like sin(x), sqrt(x), etc...   Do we really 
want to rewrite the code for these functions?

Perhaps as a challenge... but when you get down to 
doing real work, there's no point in repeating what 
you or someone else has already completed.



  

 

  

Using #include to Re-use Code:

double sqtrn(double x) { 
double guess = x/2.0;
while (fabs(guess*guess-x)>1e-6) 

 guess = (guess + x/guess)/2;
return guess;

}

File �sqrtn.cpp�:

#include <stdio.h>
#include <math.h>
#include “sqrtn.cpp”
int main(){
  double x;
  printf(“enter a number\n”);
  scanf(“%lf”, &x);
  printf(“sqrt(%lf) = %lf\n”, x,
         sqrtn(x)); 
}

File �main.cpp�:

Note the use of quotes 
around the file name.  Angle 
brackets (<>) are reserved 
for files in �standard� system 
directories.  In general your 
personal includes must give 
the full directory path to the 
file, or be in the current 
directory.

The disadvantage of this approach is that every time 
you compile a program using your function sqrtn you 
must also compile the code for sqrtn.  

If sqrtn is a large function (or if you include many 
such functions), this can unnecessarily increase the 
time it takes to build your programs. 



  

 

  

Creating Object Files:

#include <math.h>
double sqtrn(double x) { 

double guess = x/2.0;
while (fabs(guess*guess-x)>1e-6) 

 guess = (guess + x/guess)/2;
return guess;

}

File �sqrtn.cpp�:

An object file is compiled code that hasn't been fully processed 
into a program.  The above code isn't a complete program.

We can compile the code into an object module as follows, using 
the �-c� flag of g++:

g++ -O -Wall -c sqrtn.cpp Creates the file sqrtn.o.

sqrtn.o contains the function's code translated into CPU 
instructions. The -c flag causes g++ to stop after compiling, without 
continuing to the �linking� step that produces a runnable program. 

We'll talk later about how object files can be packed 
into �libraries�.



  

 

  

Linking Object Files with Your Program:

double sqtrn(double x);

File �sqrtn.hpp�:

#include <stdio.h>
#include <math.h>
#include “sqrtn.hpp”
int main(){
  double x;
  printf(“enter a number\n”);
  scanf(“%lf”, &x);
  printf(“sqrt(%lf) = %lf\n”, x,
         sqrtn(x)); 
}

File �main.cpp�: We can then compile our main 
program by typing:

 g++ -o main main.cpp sqrtn.o

If we have a pre-compiled object file, we only need to #include a 
header file containing the prototype for the function:

The disadvantage of this approach is that every time 
you compile a program using your function sqrtn you 
must also compile the code for sqrtn.  

If sqrtn is a large function (or if you include many 
such functions), this can unnecessarily increase the 
time it takes to build your programs. 

The disadvantage of object files (and libraries) is that 
they're not portable from one type of computer to 
another. I could conceivably take a cpp file from 
Linux to Windows to OS X and compile and run it in 
each place.  If I copy an object file from Linux to 
Windows, it will be useless there.



  

 

  

Part 5: Pointers to Functions

Remember the quartic Mandelbrot set problem?  We 
took an example that used the Z^2 version of the set, 
and we modified it by changing the iteration function 
to use Z^4 instead.  Most of the rest of the program 
stayed the same.  Wouldn't it have been nice to have 
a �generate_mandelbrot� function that just took a 
function as an argument and then did the right thing?

Well, as it turns out, you can do that kind of thing in 
C by using pointers to functions.
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Functions in Memory:

Like variables, each function in your program is 
stored in memory.  The function's memory location 
holds the machine-code instructions that implement 
the function.

Just as you can use pointers to refer to the location 
of a variable in memory, you can use pointers to 
functions to refer to the address of a function.

Function pointers allow you to pass 
functionality around  your program 
just like data.



  

 

  

#include <stdio.h>
#include “sqrtn.hpp”
void print_func(double (*f) (double x), 
                double val);
int main(){
  double x;
  printf(“enter a number\n”);
  scanf(“%lf”, &x);
  print_func(sqrtn, x);
}

void print_func(double (*f) (double x), double val)
{
  printf("func(%lf) = %lf\n",val, f(val));
}

Function Pointer Example:

This argument is a 
pointer to a function.

�print_func� takes a function 
name as an argument.

Any function that returns a double and takes 
a double argument can be plugged in here.

Now �f� points to the function we named.

print_func uses the name f to call the function

Q: What's going on?

A: f contains the location of the code for sqrtn in our 
example.
f also �knows� that sqrtn returns a double, so f(val) is 
interpreted as a double in the printf function.

Think of f(val) above as doing: 
1) �run the code for a function at the address stored in f�
2) �pass that function a double�  (val in this case)
3) �expect to receive a double returned from the function�



  

 

  

Anatomy of a Function Pointer:

void print_func(double (*f) (double x), double val);

In a function definition, a function pointer appears like this:

double (*f) (double x)

12 3

1. The name of the function pointer is �f�.  The name must be 
enclosed in parentheses.

2. This pointer points to a function that returns a �double�.

3. This pointer points to a function that takes one argument, of 
type �double�.



  

 

  

Part 6: Numerical Integration

Now let's look at a place where we can make good 
use of pointers to functions.

We've looked at Monte Carlo integration, but for 
some problems there are easier, quicker ways to do 
the integration.



  

 

  

�x
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X

1      2      3      4

A B

The Trapezoidal Rule:

Trapezoidal rule integration
offers a very simple method to 
approximate the integral of a 
one-dimensional function.

Consider the integral of f(x) over 
the range A<= x <= B.

The area of each of the subdivisions: 1, 2, 3, 4 may be roughly 
estimated as as the average of f(x) in this subdivision times the 
width, �x, of the subdivision.



  

 

  

�x

f(x)

X

1      2      3      4

A B

By summing the rectangular 
regions shown, we can estimate 
the integral of f(x)....

In the limit that �x is small enough so that f(x) is essentially linear 
over �x, this estimate is very accurate.   If f(x) is linear over �x, then 
the shape of each sub area is trapezoidal and our box covers the 
same area.

=

The Trapezoidal Rule, cont'd:
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We can estimate the area by 
summing the subdivisions.

The Trapezoidal Rule, cont'd:



  

 

  

#include <stdio.h>
#include <math.h>

double trap_rule(double (*f)(double), 
double min, double max, int steps){

  int i;
  double sum=0;
  double dx=(max-min)/steps;
  for (i=1; i<steps ; i++) sum += f(min + i*dx);
  return dx * ( (f(min)+f(max))/2 + sum );
}

int main() {
  printf(“Integral of sin(x) in [0:pi/2] = %f\n”, 

 trap_rule(sin,0,M_PI/2,100);

  printf(“Integral of exp(x) in [0:10] = %f\n”, 
 trap_rule(exp,0,10.,200);

}

Implementing the Trapezoid Rule:

We now can integrate any 1D function 
we choose.  Accuracy is controlled by 
the steps parameter 



  

 

  

Next Time:

This week's Lab:This week's Lab:

Prelab preparation for this weekPrelab preparation for this week

Review examples of passing data to functions via Review examples of passing data to functions via 

pointers in text/notespointers in text/notes

  Review the �Whale� example  Review the �Whale� example  

Brooks Ch. 1, Ch. 2 sections 
1-2.2



  

 

  

The End

Thanks!


