

 1

Physics 2660
Lecture 6: C � Part 5

Today
�Arrays and pointers
� Strings
� User-defined data structures
� Histograms
� Libraries
� Tips (etc)

Remember: Mid-term coming up after Spring Break!
The last part of this lecture will be sample questions
from the test.

 2

Part 1: Arrays and Pointers

Today we'll take another look at arrays and pointers,
and how the two interact.

 3

x[2]

int

000

008

012

016

int
int

int
int

004

x[1]

x[0]

x[4]

x[3]

int x[5];
int *top;
int *two;

top = x;
two = &x[2];

Arrays and Pointers:

The name of an array can be used just like
a pointer that points to the beginning of the
array.

Here we define another pointer (�top�), and
make it point to the beginning of the array,
too.

As usual, we can get the address of
individual elements using the & operator.

x

When you give the program an array index, the
program multipies the index times the size of each
element to find the address where a particular
element lives.

 4

Incrementing Pointers:

x[2]

int

000

008

012

016

int
int

int
int

004

x[1]

x[0]

x[4]

x[3]

xint x[5];
int *top;

top = x;
top++;

When you use the �++� operator on a pointer,
it moves the address of the pointer forward
by an amount equal to the size of the type of
variable (�int�, in this case).

Here, the pointer is initially pointing at the
top of the array, so �++� moves it to the next
array element.

This is our first look at �pointer arithmetic�.

Pointers �know� how big the data elements are, so they
�jump� to the next element when incremented.

This is why pointer type must generally match data
type.

 5

int main () {
const int SIZE=100;
double d_ary[SIZE];

reset_data(d_ary, SIZE);

....
}

void reset_data(double *data, int n) {
int i;
for (i=0; i<n ; i++){

*data = 0;
data++;

}
}

Passing Arrays as Pointers:
We can pass an array to a function by just giving the function a pointer to
the beginning of the array:

By giving the name, we
pass the address of the top
of the array.

Array names are
just pointers.

Set the data at this
address to zero.

Jump to the next
array element..

Again: the name of the array just acts like a pointer to
the beginning of the array. This is why we can stick
�d_ary� into the first argument of �reset_data�, even
though �reset_data� says it wants a pointer there.

 6

void clear_data(double *data, int n) {
int i;
for (i=0; i<n ; i++){
 *data = 0;

data++;
}

}

Equivalence of Pointer and Array Notation:

Use de-referencing (* operator)
and pointer arithmetic.

void clear_data(double *data, int n) {
int i;
for (i=0; i<n ; i++){

data[i] = 0;
}

}

Use array notation to
access array elements.

The two functions below do exactly the same thing, they just say it in
different ways. You can freely refer to array elements by either using
pointers or array (square bracket) notation.

Pointer notation:

Array notation:

The two functions above are exactly equivalent. You
could drop either one into a program and it would
behave just the same. The only difference is the
notation.

 7

for (i=0; i<n ; i++){
*data = 0;
data++;

}

for (i=0; i<n ; i++){
*data = 0;
data--;

}

for (i=0; i<n/2 ; i++){
*data = 0;
data+=2;

}

Pointer Arithmetic:
Pointers can be manipulated with all types of integer operations. The
following (and more) are all valid:

Step forward.

Step backward.

Step over every
2nd element

It's up to you to make sure that you don't let your
pointers go wild and point to an incorrect memory
location for your application.

Be extra careful and clear when designing code to use
pointers, since subtle problems with pointers can be
very hard to track down.

 8

[0][0] [0][1] ... [0][NC-1]

[1][0] [1][1] ... [1][NC-1]

...

[NR-1][0] [NR-1][1] ... [NR-1][NC-1]

Column
R

ow
type array[NR][NC];

In C, arrays are stored with �row-first� in memory. You can think
of a 2-D array as an NCOLUMN array repeated NROW times.

Storage of 2-D Arrays:

 9

[0][0] [0][1] ... [0][NC-1]

[1][0] [1][1] ... [1][NC-1]

...

[NR-1][0] [NR-1][1] ... [NR-1][NC-1]

Column

R
ow

[0][0] [0][1] ... [0][NC-1]

[1][0] [1][1] ... [1][NC-1]

...

[NR][0] [NR][1] ... [NC-1][NC-1]

2-D Arrays in Memory:

It is convenient to think of a 2-D array as a matrix like the one drawn
above. However, all data must be stored in a linear manner in memory:

A location in memory just has one address, so pointers
can't refer to an individual element of a 2-D array by
its two coordinates. Instead, we need to know how
many bytes we need jump from the top of the array
to get to the element we're interested in.

 10

[0][0] [0][1] ... [0][NC-1]

[1][0] [1][1] ... [1][NC-1]

...

[NR][0] [NR][1] ... [NC-1][NC-1]

int array[NR][NC];
int *array_p = array;

array_p++; Equivalent to:
array[n][m+1];

2-D Arrays and Pointer Arithmetic:

Incrementing the pointer traverses the array as shown
above. This is equivalent to incrementing the second
array index.

 11

[0][0] [0][1] ... [0][NC-1]

[1][0] [1][1] ... [1][NC-1]

...

[NR][0] [NR][1] ... [NC-1][NC-1]

int array[NR][NC];
int *array_p = array;

array_p += NC; Equivalent to:
array[n+1][m];

Incrementing by Row:

If we want to jump all the way down to the next row, we
need to increment the pointer by as many elements
as there are columns. This is equivalent to
incrementing the first index of a 2-D array.

 12

More Pointer Artithmetic on 2-D Arrays:

// point to array [0][5]:
array_p2 = array_p + 5;

// point to array [1][3]:
array_p2 = array_p + (1*NC) + 3;

// point to last element:
array_p2 = array_p + (NR-1)*NC + NC-1;

// or, equivalently:
array_p2 = array_p + NR*NC - 1;

Once we know how 2-D arrays are stored in memory, we can use
pointer arithmetic to point to any array element we want:

 13

int a[NR][NC];
int *array_p = a;

// point to array [0][5]:
array_p2 = array_p[5];

// point to array [1][3]:
array_p2 = array_p[(1*NC) + 3];

// point to last element:
array_p2 = array_p[(NR-1)*NC + NC-1];
// or:
array_p2 = array_p[NR*NC - 1];

1-D Notation for 2-D Arrays:
C doesn't know the dimensions of the array that a pointer is pointing at,
so we can act as though we're pointing at a 1-D array even if we
originally defined a 2-D array. We just enclose the total offset in square
brackets:

All that matters is the total size (total number of
elements) in the array. C doesn't care how we divide
them up, but we need to make sure we don't try to
use elements past the end of the memory that we've
reserved for our array.

 14

int main () {
...
 int *array_p = array; // point to array [0][0]
 iclear(array_p, NROW*NCOL);
...
}

// This function clears any size/dimension
// integer array:
void iclear(int *pntr, int size){
 int i;
 for (i=0; i<size; i++){

 *(pntr+i) = 0;
}

}

All Arrays are Linear in Memory:
C doesn't know the dimensionality of the array being pointed to. We only
need to care about the total number of elements. It doesn't matter
whether the array is [30], [2][15] or [2][3][5]. Each has 30 elements, and
the function below could be used to clear each of them.

Total number
of elements.

As far as C is concerned, an array is just a chunk of
memory. How we subdivide it is up to us.

 15

Part 2: Character StringsPart 2: Character Strings

As we've noted before, character strings are just
arrays of characters.

 16

The strlen Function:

#include <string.h>
...
char name[15] = "fred";
char day[] = "Tuesday";

printf("%d %d %s\n",
sizeof(name),
strlen(name),
name);

printf("%d %d %s\n",
sizeof(day),
strlen(day),
day);

Character strings are just arrays of characters. The strlen function
(defined in string.h) returns the length of a string.

15 4 fred -> 15 bytes, 4 characters
 8 7 Tuesday -> 8 bytes, 7 characters (so what's up?)

Define a character
string of up to 15
characters.

Let the compiler
figure out the size.

Why does �day� have a length of 8, even though it only
contains seven characters? To understand, let's
digress a little and look at how computers store
characters.

 17

1000001 A 1010101 U
1000010 B 1010110 V
1000011 C 1010111 W
1000100 D 1011000 X
1000101 E 1011001 Y
1000110 F 1011010 Z
1000111 G
1001000 H 0110001 1
1001001 I 0110010 2
1001010 J 0110011 3
1001011 K 0110100 4
1001100 L 0110101 5
1001101 M 0110110 6
1001110 N 0110111 7
1001111 O 0111000 8
1010000 P 0111001 9
1010001 Q
1010010 R
1010011 S
1010100 T

American Standard Code for
Information Interchange (ASCII)

1963:1840s:
Character Encoding:

00000000 = “NUL”

Prior to the 1960s, the most widespread way of communicating data
electronically was morse code. When a telegram was sent, its text
was encoded in morse code and transmitted through air or a wire to
its destination, where it was decoded back into text.

Morse code was fine for human telegraphers, but it was clumsy for
computers. In the 1960s the �American Standards Association�
published a new, more computer-friendly way of transmitting text.
This was called the American Standard Code for Information
Interchange (ASCII).

In ASCII, each character is represented by 8 bits of information (1 byte).
When you store text in a file on disk, the text is stored as ASCII
characters. ASCII characters are also the way communications
between a terminal (or pseudo-terminal) and a computer are encoded.

(Actually, other encodings like UTF-8 may be used these days, but the
principle is the same. For simplicity, let's just assume everything is
ASCII.)

 18

Null-Terminated Strings:
char day[] = "Tuesday";

01010100

01110101

01100101

01110011

01100100

01100001

01111001

00000000

day
T
u
e
s
d
a
y
\0

Each character takes up one byte (8 bits) in
memory. A character string is just an array of
characters.
But, as we've seen, C doesn't know how long
an array is. When we make a statement like:
printf (“%s”, day);

how does printf find the end of the string? We
haven't told it the string's length explicitly.

The answer is that, in C, strings are �null-terminated�.
By this we mean that a special character (�NUL�) appears as the last
character in the string. Because of this, functions like printf can find the
end of the string by looking for the NUL.
This means that the array needs to have room for one more character
than the text we're putting into it.

The special character �NUL� is a non-printable
character that's represented by a string of eight
zeros in memory. We sometimes write it as �\0�.

 19

Comparing Strings with strcmp:
The strcmp function (also defined in string.h) compares two strings:

int strcmp(char* S1, char *S2);

0 if S1 = S2
>0 if S1 > S2
<0 if S1 < S2

Returns:

#include <string.h>
int main () {
 char string1=”abcde”;
 char string2=”fghij”;
 if (!strcmp(string1,string2)) {

printf (“They match.\n”);
 } else {

printf (“They don't match.\n”);
 }
}

strcmp compares strings �lexicographically�
(i.e., in dictionary order). One string is
�greater than� another if it would come later
in the dictionary.

 20

Part 3: Structures

Loops are probably the most useful feature of C. My
choice for the second most useful feature is
structures. Let's take a look at what they're good for.

 21

Parallel Arrays:

int population[50];
double income[50];
double area[50];
double birthrate[50];
double deathrate[50];

Let's say we wanted to store some census information about each of
the fifty states.
There are several interesting facts about each state, but we can only
store one fact in each variable. So we might choose to store the data
in a bunch of parallel arrays, like this:

This will work, but it's a little awkward. It would be nicer if we could
bundle together all of the facts about a given state into one package.

 22

Structures:

struct {
 int population;
 double income;
 double area;
 double birthrate;
 double deathrate;
} state[50];

In addition to the regular variable types like �int� and �double�, C
lets us define our own custom-made types for variables, and pack
multiple pieces of data into them.

For example, we could define a 50-element array called �state�
that would hold all of our census data:

�state� is of type �struct� (a data structure), and each element of the
array will contain several pieces of related data.

Note that the text ties together �struct� and �typedef�,
but they're really separate things. In these notes I'm
going to de-couple them so you can see what they
do separately. We'll talk about typedef a little later.

 23

The . Operator:

struct {
 int population;
 double income; // Average/person/year.
 double area; // In sq. miles.
 double birthrate; // Per year.
 double deathrate; // Per year.
} state[50];

state[0].population = 1234567;
state[0].income = 40280.0;
state[0].birthrate = 1280.5;
state[0].deathrate = 1280.1;

You can refer to a particular piece of data in a struct by using the
dot operator (�.�):

 24

struct {
 int population;
 double income; // Average/person/year.
 double area; // In sq. miles.
 double birthrate; // Per year.
 double deathrate; // Per year.
} state[50];

struct {
 int population;
 double income; // Average/person/year.
 double area; // In sq. miles.
 double birthrate; // Per year.
 double deathrate; // Per year.
} country[100];

Re-using Structs:
What if we wanted to use the same data structure for other variables?
Say, for example, we wanted to store census data for a group of 100
countries. We could just re-type the struct definition:

But that would be tedious, and if we needed to change
one struct later we'd probably want to remember to
change the other one too. There's a better way.

 25

Using typedef:

Instead of re-typing the struct, we could use typedef to define an
alias for this struct:

typedef struct {
 int population;
 double income; // Average/person/year.
 double area; // In sq. miles.
 double birthrate; // Per year.
 double deathrate; // Per year.
} census;

census state[50];
census country[100];

With typedef we've created a new variable type called �census�
and now we can use this to define variables, just like �int� or
�double�.

Remember, we don't have to use typedef and struct
together. We can use them separately if we want to.
Next we'll see how we can use typedef on its own.

 26

More typedef Examples:

//Define aliases for some types:
typedef double funds;
typedef double weight;
typedef int days;

//Use these aliases to define some variables:
funds bank_balance;
weight fish_per_month[12];
days til_christmas;

You don't need to use struct to use typedef. You can use typedef to
define aliases for any variable type:

This may make it easier for you to re-define your variables later on.
Say, for example, that you've made so much money that you now
need to use a �long double� to count your fortune! If your program
uses the �funds� type for all of your accounting variables, then you'll
only need to change one line: the typedef statement that defines
�funds�.

 27

Pointers to Structs:

typedef struct {
 int population;
 double income; // Average/person/year.
 double area; // In sq. miles.
 double birthrate; // Per year.
 double deathrate; // Per year.
} census;

census states[50];
census *sptr;

sptr = states;

printf (“Pop = %d\n”, states[0].population);

printf (“Pop = %d\n", (*sptr).population);

printf ("Pop = %d\n", sptr->population);

We can have pointers to structs just like pointers to any other type
of variable:

When using pointers, C
gives us two ways to get
data from a struct.

All three of the printf statements do exactly the same
thing.

Generally, when using pointers, the �->� notation will be
more readable.

 28

Using the -> Operator:

typedef struct {
...
} census;

census states[50];

for (i=0;i<50;i++) {
clear_data(&states[i]);

}
...
void clear_data(census *s) {

s->population = 0;
s->income = 0;
s->area = 0;
s->birthrate = 0;
s->deathrate = 0;

}

Here's another example showing
how the �->� operator can be
used to refer to variables within a
structure.

This program just loops through all of the states in our
array, and zeroes out the data in each state's data
structure.

 29

typedef struct{
double re, im;

} Complex;

double magnitude(Complex z) {
return sqrt(z.re*z.re + z.im*z.im);

}

void conjugate(Complex *z) {
z->im = -1.0*z->im;

}

int main() {
 Complex q;
 q.re = 12.;
 q.im = 23.;
 conjugate(&q);
 printf(“q*=%f, %f; |q|=%f \n”,
 q.re, q.im, magnitude(q));
}

Complex Numbers as Structs:

Function to find
the magnitude.

Function to convert
number to its complex
conjugate.

Define q as
�complex�.

Structs are a natural way to express complex numbers.
 Above, we define a new type, �Complex�, which is a
struct containing the real and imaginary parts of a
complex number. We then define some functions
that accept Complex arguments (or pointers to
Complex).

 30

double magnitude(complex z) {
return sqrt(z.re*z.re + z.im*z.im);

}

double magnitude(complex *z) {
return sqrt(z->re*z->re + z->im*z->im);

}

Pass a copy of the complex structure
to the function. Do calculation from
the copied data.

Pass a pointer to the complex structure to
the function. Do calculation from the
original data.

Passing Pointers versus Copying Data:
Here are two different ways we could write the �magnitude� function:

Generally more efficient: less data to move around.

When writing a function ask the question:

�Do I really need a new copy of the data in this
function?�

If not, passing pointers can greatly increase the
efficiency of your program.

Note: this makes little to no difference for small data
elements like int and double. In these cases, there's
no real performance justification for adding the
complexity that comes with pointers.

But passing pointers should always be considered for
large structures (say, a structure that includes a big
array) to improve performance.

 31

Part 4: Enumerating Lists

Names are generally easier to remember than
numbers. C provides us with a rather awkward way
of using names instead of integers.

 32

The enum Statement:

struct {
double calories;
double exercise_hours;

} data[7];

enum dayname {Sunday, Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday};
dayname day;

...

day = Sunday;
printf ("Calories on Sunday: %lf\n",
 data[day].calories);

It's often more convenient to use names than numbers. In the example
below, we define the variable �day� using an �enum� (�enumeration�). .

An enum statement defines a list of names that will automatically be
mapped to a list of integers. By default, the numbers start with zero.
Enum is like typedef, in that the newly-created enum type can be used
to define variables

Enum works a lot like typedef. We define a new type
(�dayname�, in the example above) and then we can
use that type to define variables. Any variable of this
type will accept any of the values we've listed in the
enum.

If you were looking for the first day in the array, it would
be really easy to accidentally type �1� when you
meant �0�. It's somewhat less likely that you'd type
�Monday� instead of �Sunday�. This kind of thing is
the main advantage of enums.

 33

Part 5: HistogramsPart 5: Histograms

This is something we'll be looking at in lab this week.

Histograms are one of the most useful data
visualization tools in Physics. If you go into
research, you'll probably use them throughout your
career.

 34

0 1 2 3 4 5 6 7 8 9 10

What's a Histogram?

Age of Laptop Computer (Years)

A histogram shows the distribution of data by dividing it up into discrete
intervals and counting the data points that fall within each interval.

How old is your laptop computer, in years,
months and days? If we looked at all of the
computers in the class, it's unlikely that many
of them would be exactly the same age. If
we wanted to look at the distribution of ages,
it would be useful to break the data into
categories: say, one per year.

 35

Reducing Data:
Histograms can reduce large quantities of data into a manageable
summary.

Here we've divided the
range from 0 to 100 into 50
bins.

We then generated 1000
random numbers and
counted how many fell into
each bin.

So, with just 50 numbers (the counts in each bin) we have a
summary that shows us the distribution of our 1000 random
numbers. We could go on and generate millions of numbers, and
we'd still be able to summarize them in the same histogram, using
only 50 counters.

 36

A Simple struct to Store a Histogram:

#define HBINS 50

typedef struct {
 double h_array[HBINS];
 double xmin, xmax;
 int entries;
 int under_flow, over_flow;
 double sumx, sumx2;

} h1;

These histograms will have
a fixed number of bins.

Array of bin counts.

min/max of x range.

Total # of counts.

Counts outside range.

Sums of values and
squares of values, for
calculating statistics.

Here's a structure we could use to store histogram data. At the heart of it
is an array of counts.

This is the kind of data structure that you might use to
store histogram data. In lab this week, we'll
introduce a library of histogram functions that use
this structure.

 37

Some Basic Histogram Operations:

� create / initialize: Set range for histogram, etc.

� reset: Clear bin contents to 0.

� fill: Add a data value to the histogram.

� dump: Print contents of histogram.

� plot: Graphically display the histogram.

 38

/* initialize hist. Set min/max limits for the histogram */
void h1init(h1 *hist, double xmin, double xmax);

/* add a data point to a histogram */
void h1fill(h1 *hist, double x);

/* dumps hist to screen (filename=��) or to a file �filename�. Returns 0 for success, 1
for error */
int h1dump(h1 *hist, char *filename);

/* calculate and return statistics for a histogram
 input: h1 *hist
 output: int *entries, double *mean, double *std_dev */
void h1stats(h1 *hist, int *entries, double *mean,
 double *std_dev);

/* plot a histogram to the screen (filename=��) or a graphics file �filename� */
void h1plot(h1 *hist, char *filename);

Function Prototypes for Simple Histogram Tools:

Here are the function prototypes for some of the
functions in the histogram library we'll use in lab.

 39

void h1reset(h1 *hist){
 int i;
 hist->entries=0;
 hist->sumx=0;
 hist->sumx2=0;
 hist->over_flow=0;
 hist->under_flow=0;
 for (i=0; i<HBINS; i++) hist->h_array[i]=0;
}

void h1init(h1 *hist, double min, double max){
 hist->xmax = max;
 hist->xmin = min;
 h1reset(hist); // clear all storage variables
}

Reset and initialize:

And here's the code for a couple of them.

 40

void h1fill(h1 *hist, double x){
 int bin=0;
 double binsize, lowedge;

 if (x < hist->min) hist->under_flow++;
 else if (x >= hist->max) hist->over_flow++;
 else {
 binsize = (hist->max - hist->min) / HBINS;
 lowedge = hist->min; // low edge of 1st bin
 while (fabs(x-lowedge) > binsize) {
 bin++;
 lowedge += binsize; // move to next bin
 }
 hist->h_array[bin]++; //increment the appropriate bin
 }
 hist->entries++;
 hist->sumx += x;
 hist->sumx2 += x*x;
}

Filling:

 41

Part 6: Libraries

We've been using libraries all along. C's standard
libraries include all of the I/O functions, math
functions, random number generation functions and
so forth that most of our programs have relied upon.
Now we'll start looking at how you can create your
own libraries, containing your own functions.

 42

Building Libraries:
To build a library, first make object files (as we have done before):
g++ -O -Wall -c hist.cpp
g++ -O -Wall -c random.cpp

Next combine the object files into a library:
ar -csr libp2660.a hist.o random.o

The archive command is used to create your library, the syntax we will
use is:

ar -csr lib<name>.a file1.o file2.o ...

You can list the contents of your library with a command like:

ar -t libp2660.a hist.o
random.o

csr =

c: �Create archive, if it doesn't already exist.�
s: �Add a table of contents to the archive.�
r: �Put the following files into the archive, replacing any

already-existing files with the same names.�

 43

// Header files for your library
#include “random.hpp”
#include “hist.hpp”

int main(){
 h1 myHist;
 // Set range for histogram's x-axis
 h1init(&myHist, 0, 100);
 for (int i=0; i<1000; i++) {
 // Fill the histogram w/ 100 data points
 // from the function randn:
 h1fill(&myHist, randn(50,10));
 }
 // Plot the histogram to the screen
 h1plot(&myHist, “”);
 return 0;
}

An Example Program:
It's very easy to use functions from your library within your programs:

This shows a program that uses some of the
histogramming functions from the �Physics 2660
library� that we'll be using soon.

 44

To use your library with a program:

1) make sure your program includes header files defining the functions
you use

2) tell the linker how to find your library

Using Your Library to Build a Program:

Let's say your program file is called test_hist.cpp. You would build the
program as follows:

 g++ -O -Wall test_hist.cpp -o test_hist -L. -lp254

-L specifies a new directory to search for
library files (here we add �.�, the current
directory, to the library search path)

-l (small �L�) gives the name of a library (libp254.a) to search for object
files needed to complete your program. Note that the �lib�/�.a�
prefix/suffix is omitted from the command

 45

In general the header files and libraries will not be located in your
current working directory, so for more complex programs the build
command could be of the form:

g++ -O -Wall \
-I<include_dir1> -I<include_dir2> \ test_hist.cpp
-o test_hist \
-L<lib_dir1> -L<lib_dir2> \
-l<lib1> -l<lib2> -l<lib3>

In this week's lab we'll practice making and using code libraries and
start using a simple histogram library to visualize data generated in our
programs.

Using Your Library to Build a Program:

 46

Mid-Term Example Problems:

We have a mid-term exam coming up after Spring
break. The following are some example questions
from previous mid-terms. (Some of them may even
show up this time!) I'll try to make the real questions
no harder than these, and I'll avoid unneccessarily
tricky questions.

There will be some more example questions included
with this week's homework assignment.

Most of the problems on the mid-term will be multiple-
choice, with a few short-answer questions.

 47

Write out or choose the GNU/Linux
shell command that does the following:

1) lists files in your directory ls

2) lists files in your directory, with sizes
shown

ls -l
or
ls -al

3) renames the file my.dat to your.dat mv my.dat your.dat

4) places file a.txt in a subdirectory
called sub

a) rn a1.txt a2.txt
b) mv a.txt
c) rename a.txt sub/a.txt
d) mv a.txt sub

The Shell:

Answers are in red.

 48

Write out or choose the
GNU/Linux shell command that
does the following:
1) Makes the executable file code
from code.cpp

a) g++ -c code.cpp
b) ar -csr code.cpp
c) g++ -o code code.cpp
d) g++ code.cpp > code

2) Creates an object file from
code.cpp

a) g++ -c code.cpp
b) ar -csr code.cpp
c) g++ -o code code.cpp
d) g++ code.cpp > code

3) Compiles code.cpp with
warnings and optimization turned
on

a) g++ -c code.cpp
b) g++ -O code -Wall -o code.cpp
c) g++ -Wall code -O -o code.cpp
d) g++ -Wall -O -o code code.cpp

4) Compiles code.cpp and links
with an object file to make an
executable

a) g++ -o code code.cpp mylib.o
b) g++ -O mylib.o code.cpp
c) g++ -Wall -L mylib.o code.cpp
d) g++ -Wall -O -o code code.cpp

Compiling and Linking:

1. �-o code� means �write the output executable into
the file �code�.

2. The �-c� flag produces an object file.

3. The �-Wall� flag turns on warnings, and the �-O�
(capitol O) flag turns on optimization.

4. To link with an object file, just add the name of the
object file to the end of the command.

 49

Choose the best answer.
1) Define an integer variable, i: a) int i;

b) int &i;
c) integer i;
d) int *i;

2) Define a floating point variable
with value=3.14 whose value
cannot be changed:

a) #define PI=3.14;
b) const double PI=3.14;
c) #define PI 3.14
d) static float PI=3.14;

3) The statement to read a double
value into the variable named
discount is:

a) scanf("%lf", discount);
b) scanf("%d", &discount;
c) scanf(discount);
d) scanf("%lf", &discount);

4) Print the double variable q in
scientific or floating point notation,
whever is more compact:

a) printf(“%ef”, q);
b) printf(“%e”, q);
c) printf(“%g”, q);
d) printf(“%lf”, q);

The C Language (1):

1. Well, obviously.

2. Why didn't we use one of the �#define� statements?
In part because these don't define a floating-point
variable. They just specify some text that we'd like to
find-and-replace in our program. The �#define�
statements don't tell the compiler anything about the
type of data. Also, why �const�? Because this tells
the compiler that the value of this variable can't be
changed. (Don't confuse this with �static�, which
means something else entirely.)

3. Note the %lf, for type �double�, and the �&�.

4. The �%g� format specifier does what we want.

 50

Choose the best answer.

1) Using the file pointer,
input_file, open the file
results.dat for read
mode.

a) openf(“results.dat”,”r”,input_file);
b) open(input_file,“results.dat”,“r”);
c) fopen(input_file, “results.dat”, “r”);
d) input_file = fopen(“results.dat”, “r”);

2) Which code snippet
reads an integer from the
program's command line?

int main(int argc, char *argv[]){
...
a) int i = argv[1];
b) int i = atoi(argv[1]);
c) int i = atoi(argv[0]);
d) int i = (int)argv[1]);

3) Function pointer type
that can point to
sqrt() function in the C
math library:

a) double (*f) (double x)
b) double *f(double x)
c) double &f(double x)
d) double *f(double x)

The C Language (2):

1. This is the right form for the �fopen� function call.

2. Why not �c�? Because argv[0] is the name of the
program, not the first command-line argument. Why
�atoi�? Because argv[1] is a character string, not an
integer. The atoi function converts strings into
integers.

3. The sqrt function takes one �double� argument, and
returns a double. That's what this function pointer
says.

 51

Choose the best answer.

1) Sum all multiples of 17
between 33 and 123456:

a)

for (int i = 33; i<123456; i++){
 sum += (i/17) * (i%17);
}

b)

for (int i = 33; i<123456; i++2){
 if (i%17) sum += i;
}

c)

for (int i = 33; i<123456; i++){
 if (!(i%17)) sum += i;
}

d)

for (int i = 33; i<123456; i+17){
 sum += i;
}

The C Language (3):

To find multiples of 17, we can use the modulo
operator (%). This returns the remainder. So, if the
quantity i%17 is zero, that means that i is a multiple
of 17. When i%17 is zero, �!(i%17)� is 1.

 52

Choose the best answer.
1) Which of the following gives the
memory address of integer
variable a?

a) *a;
b) a;
c) &a;
d) address(a);

2) Which of the following gives the
value stored at the address
pointed to by pointer a?

a) a;
b) val(a);
c) *a;
d) &a;

3) Which of the following gives the
size, in bytes, of an �int� variable?

a) *int;
b) sizeof(int);
c) strlen(int);
d) SIZE(int);

4) Which is a valid typecast? a) i(double);
b) double:i;
c) to (double,i);
d) (double)i;

The C Language (4):

1. The ampersand (&) returns the address of a
variable.

2. The star (*) returns the data stored at this address.

3. Sizeof returns the size, in bytes, of a variable or
expression.

4. The others aren't valid C statements.

 53

Choose the best answer.
1) What is the only function all C
programs must contain?

a) start()
b) system()
c) main()
d) program()

2) Which of the following is the
correct operator to compare two
numerical variables?

a) :=
b) =
c) equal
d) ==

3) How many times is a �do while�
loop guaranteed to loop?

a) 0
b) Infinitely
c) 1
d) Variable

4) Evaluate:
 !(1 && !(0 || 1)).

a) True
b) False
c) Unevaluatable

The C Language (5):

1. You knew that.
2. Remember: �==� compares two things, but �=�

assigns one thing to another. And for string
comparisons, we need to use �strcmp�.

3. �do while� loops always execute at least once, but a
�while� loop won't necessarily ever be executed.

4. Starting from the innermost parentheses:
 0 || 1 is an �or�, so it's true if either one is true.

--> 1
 !1 is the logical opposite of 1, so:

--> 0
 1 && 0 is an �and�, so it's only true if both are.
 --> 0
 !0 is the logical opposite of 0, so:
 --> 1, or True.

 54

Choose the best answer.
1) If N is an integer variable with
the value 10, what is the value of
x after this statement?
 double x = 1/N*2.0;

a) inf
b) 0.0
c) .05
d) .2

2) Which is not a valid C
statement?

a) x = a + b;
b) r = sqrt(x*x+y*y)
c) val = sin(PI/n);
d) a++;

3) What is the index number of
the last element of an array with
29 elements?

a) 29
b) 28
c) 0
d) Programmer-defined

4) Which of the following gives
the memory address of the first
element in array foo, an array with
100 elements?

a) foo[0];
b) foo;
c) &foo;
d) foo[1];

The C Language (6):

1. C will evaluate this left-to-right, so:
 �1� is an integer and �N� is an integer, so 1/N is zero.

Zero times 2.0 is zero.

2. This is missing a semicolon.
"You must not forget the semicolon, best beloved."

3. The index of an array goes from zero to N-1.

4. The name of an array is equivalent to a pointer that
points to the top of the array.

 55

Choose the best answer.
1) How is the continue
statement used?

a) To continue to the next line of code
b) To return from a functionality
c) To stop the current iteration and begin
the next iteration
d) As an alternative to the else statement

2) Which of the following
compares two strings?

a) compare();
b) stringcompare();
c) cmp();
d) ==
e) strcmp();

3) How does one write the
statement, "if i NOT equal to
zero"?

a) if (i = !0)
b) if !(i == 0)
c) if (i != 0)
d) if (i <> 0)

The C Language (7):

1. Compare how �continue� and �break� work.

2. We talked about this earlier in today's lecture.

3. Note that �!=� is another one of C's comparison
operators, like �==�, �>�, �<�, etc. Some other
languages would allow expression �b�, but C doesn't
like it.

 56

1) Given the variables:

int sum;
int maxint;

Write a statement that tests to see if sum is equal to 1000 and also
that maxint is between 10 and 50, inclusive.

If the condition is satisfied, print the text "OK".

The C Language (8):

if (sum == 1000 &&
 maxint >= 10 &&
 maxint <= 50) {
 printf (“OK\n”);
}

if (sum == 1000 &&
 maxint >= 10 &&
 maxint <= 50)
 printf (“OK\n”);

or

 57

Next Time:

This week's Lab:This week's Lab:

In this week's lab you will practice building a custom In this week's lab you will practice building a custom
library, you'll also use a pre-written histogram library to library, you'll also use a pre-written histogram library to
display data distributions. display data distributions.

Brooks Ch. 1, Ch. 2 sections 1-2.2

After Spring Break: Mid-Term Exam!

 58

The End

Thanks!

